MAT 371 Homework 6
Instructor: John Quigg

1. Let $f: (a, b) \to \mathbb{R}$ be continuous. Suppose f has a maximum. Prove that f is not 1-1.

2. Let $f: \mathbb{R} \to \mathbb{R}$, and let $A \subseteq \mathbb{R}$. Suppose that the restriction $f \mid A$ is continuous,

 (a) Give an example where f is not continuous on A.

 (b) Prove that if $A = (0,1)$, then f is continuous on A.

3. (a) Prove that if $f, g: A \to \mathbb{R}$ are uniformly continuous, then $f + g$ is also uniformly continuous.

 (b) Give an example where fg is not uniformly continuous.