1. Complete the following definitions:
 (a) Let \(f : A \to \mathbb{R} \). We say \(f \) is uniformly continuous if \(\ldots \)
 (b) Let \((x_n)\) be a sequence. We say \(x_n \to -\infty \), or \((x_n)\) diverges to \(-\infty\), if \(\ldots \)

2. State the following theorems:
 (a) Bolzano-Weierstrass Theorem.
 (b) Mean Value Theorem.

3. Give an example of a sequence \((f_n)\) of integrable functions defined on \([0, 1]\) such that \(f_n \to 0\) pointwise and \(\int_0^1 f_n \neq 0\). Be sure to give reasons for all your steps!

4. (a) Define \(g : \mathbb{R} \to \mathbb{R} \) by
 \[
g(x) = \begin{cases}
 \sin \frac{1}{x} & \text{if } x \neq 0 \\
 0 & \text{if } x = 0.
 \end{cases}
 \]
 Prove that \(\lim_{x \to 0} g(x) \) does not exist.
 (b) Define \(f : \mathbb{R} \to \mathbb{R} \) by
 \[
f(x) = \begin{cases}
 x \sin \frac{1}{x} & \text{if } x \neq 0 \\
 0 & \text{if } x = 0.
 \end{cases}
 \]
 Prove that \(f \) is not differentiable at 0.

5. (a) Let \(\sum_{n=0}^{\infty} c_n x^n \) be a power series. Suppose the limit
 \[
 L := \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|
 \]
 exists (and for simplicity suppose \(L \) is a positive real number). Prove that the radius of convergence of the power series is
 \[
 \frac{1}{L}.
 \]
 (b) Use the result of part (a) to find the radius of convergence of the power series
 \[
 \sum_{n=0}^{\infty} \frac{x^n}{n + e^n}.
 \]

6. Let \(f : (0, \infty) \to \mathbb{R} \) be continuous. Suppose that for all \(M > 0 \) there exist \(a, b > M \) such that \(f(a) > 4 \) and \(f(b) < 2 \).
 (a) Prove that for all \(M > 0 \) there exists \(c > M \) such that \(f(c) = 3 \). Be sure to give complete reasons for all your steps!
 (b) Use the result of part (a) to prove that there exists a sequence \((x_n)\) such that \(x_n \to \infty \) and for all \(n \in \mathbb{N} \) we have \(f(x_n) = 3 \).