MAT 371 HOMEWORK 4

JOHN QUIGG

1. Let \(\{x_n\} \) be a sequence, and suppose \(x_n \to x \). Define

\[
t_n = \frac{1}{n} \sum_{k=1}^{n} x_k.
\]

Prove that \(t_n \to x \). Hint: break the sum \(\sum_{k=1}^{n} x_k \) into two pieces, one with a fixed number of terms, and the other with all terms close to \(x \).

2. (a) Prove that the sequence

\[
\left(\frac{n^2 + 3n + 5 \sin n}{3n^2 + 4} \right)
\]

has a convergent subsequence.

(b) Does the sequence \((n(-1)^n) \) have a convergent subsequence? Why or why not?

3. Prove that for all \(x > 0 \), \(x^{1/n} \to 1 \). Hint: show that is suffices to consider the case \(x > 1 \). Then show that if \(\epsilon > 0 \) then \(x^{1/n} \) is eventually smaller than \(1 + \epsilon \).

4. Let \(x_0 > 1 \), and for \(n \in \mathbb{N} \) define

\[
x_n = \frac{1 + x_{n-1}}{2}.
\]

Prove that \(x_n \to 1 \). Hint: show the sequence \((x_n) \) is monotone, and then argue by contradiction that \(\inf x_n \) cannot be greater than \(1 \).