Eigenvalues of linear operators — Exercises

1. In each part, decide whether \(\vec{u} \) is an eigenvector of \(T \), and if so determine the associated eigenvalue:

(a) \(T(\vec{x}) = A\vec{x} \) with \(A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \), \(\vec{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \)

(b) same \(T \) as part (a), \(\vec{u} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \)

(c) same \(T \) as part (a), \(\vec{u} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \)

(d) \(T(\vec{x}) = A\vec{x} \) with \(A = \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix} \), \(\vec{u} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \)

(e) same \(T \) as part (d), \(\vec{u} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \)

(f) \(T \in L(M_2) \) defined by \(T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \), \(\vec{u} = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \)

(g) same \(T \) as part (f), \(\vec{u} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \)

2. Define \(T \in L(\mathbb{R}^n) \) by

\[
T \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} x_2 \\ x_3 \\ \vdots \\ x_n \\ x_1 \end{pmatrix}.
\]

Find an eigenvector with associated eigenvalue 1.

3. Let \(A \in M_n \) and \(\lambda \in \mathbb{R} \), and assume that the entries in each row of \(A \) sum to \(\lambda \). Show that \(\lambda \) is an eigenvalue of \(A \).

4. Let \(T \in L(\mathbb{R}^2) \) be rotation by \(\pi/3 \). Is \(T \) diagonalizable? Why or why not?

5. Let \(V \) be a vector space and \(T \in L(V) \), and let \(\vec{x} \) be an eigenvector of \(T \) with associated eigenvalue \(\lambda \).
(a) Show that \(\vec{x} \) is an eigenvector of \(T^2 \) with associated eigenvalue \(\lambda^2 \).

(b) Show that if \(T \) is invertible then \(\vec{x} \) is an eigenvector of \(T^{-1} \) with associated eigenvalue \(1/\lambda \).

6. (a) Let \(V \) be the vector space of functions on \([0, 1]\) spanned by \(\{e^{2x}, x^3\} \), and define \(D \in L(V) \) by \(D(f) = f' \). Why is 2 an eigenvalue of \(D \)?

(b) Let \(V \) be the vector space of functions on \([0, 1]\) spanned by \(\{\sin x, \cos x\} \), and define \(D \in L(V) \) by \(D(f) = f' \). Show that \(D \) has no eigenvalues.