1. In this problem, only the answers will be graded — no reasons needed.

(a) Define \(T \in L(\mathbb{R}^2) \) by \(T(x, y) = (2x - y, x + 3y) \). Find the matrix which represents \(T \) relative to the standard basis.

(b) Let \(T \) be a linear operator on a 2-dimensional vector space \(V \), let \(E \) be a basis of \(V \), and let \(\vec{x} \in V \). If \([T]_E = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \) and \([\vec{x}]_E = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \), find \([T(\vec{x})]_E \).

(c) Let \(A \) be a \(7 \times 5 \) matrix, and let \(W = \text{Col} \ A \). If \(\dim W^\perp = 2 \), do the rows of \(A \) span \(M_{1 \times 5} \)?

(d) Find the determinant of \(\begin{pmatrix} 2 & 1 & 8 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{pmatrix} \).

(e) Let \(\vec{x} \) and \(\vec{y} \) be vectors in an inner product space \(V \). Suppose
\[
\|\vec{x}\| = 3, \quad \|\vec{y}\| = 4, \quad \langle \vec{x}, \vec{y} \rangle = 5.
\]
Find \(\cos \theta \), where \(\theta \) is the angle between \(\vec{x} \) and \(\vec{y} \).

(f) If \(T \in L(\mathbb{R}^5, \mathbb{R}^4) \) has nullity 1, is \(T \) onto?

2. Define \(T \in L(P_3, P_2) \) by
\[
T(a + bx + cx^2 + dx^3) = a - 2b + 2d + (c + d)x + (2a - 4b + 2c + 6d)x^2.
\]

(a) Find the matrix which represents \(T \) relative to the standard bases.

(b) Find the reduced echelon form of the matrix of part (a).

(c) Use the results of parts (a) and (b) to find a basis of the range of \(T \).
3. Consider the system \(A\vec{x} = \vec{b} \), where
\[
A = \begin{pmatrix} -1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \quad \text{and} \quad \vec{b} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}.
\]

(a) Show that the normal equations for the system \(A\vec{x} = \vec{b} \) are
\[
\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \vec{x} = \begin{pmatrix} -4 \\ 1 \end{pmatrix}.
\]

(b) Find the least squares solution of the system \(A\vec{x} = \vec{b} \).

(c) Find the vector in the column space of \(A \) which is closest to the vector \(\vec{b} \).

4. Let \(A \) be a \(3 \times 3 \) symmetric matrix (of real numbers), and suppose that:
 - the eigenvalues of \(A \) are \(-1\) and 5;
 - the eigenspace associated to the eigenvalue \(\lambda = -1 \) has a basis \(\left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} \right\} \);
 - the eigenspace associated to the eigenvalue \(\lambda = 5 \) has a basis \(\left\{ \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\} \).

Find an orthogonal matrix \(P \) and a diagonal matrix \(D \) such that \(D = P^{-1}AP \).

5. Let
\[
A = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & 2 \end{pmatrix}.
\]

(a) Find the eigenvalues of \(A \).

(b) For each eigenvalue of \(A \), find a basis for the associated eigenspace.