1. In this problem, only the answers will be graded — no reasons needed.

(a) Let \(A \) be a 7 \times 11 matrix. Assume that the solution space of the homogeneous system \(A\vec{x} = \vec{0} \) has dimension 5. What is the dimension of the row space of \(A \)?

(b) If \(T \in L(\mathbb{R}^3, \mathbb{R}^4) \), is it possible for \(T \) to be onto?

(c) Define \(T \in L(\mathbb{R}^3) \) by \(T(\vec{x}) = A\vec{x} \), where \(A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \). Is \(T \) 1-1?

(d) Let \(A \in M_{5\times8} \) and \(\vec{b} \in \mathbb{R}^5 \). If \(\text{rank} \ A = 3 \) and \(\text{rank} \ (A \quad \vec{b}) = 4 \), is the linear system \(A\vec{x} = \vec{b} \) consistent?

(e) If a matrix is 5 \times 9, is it possible for its columns to be independent?

(f) If a matrix is 5 \times 9, is it possible for its rows to be independent?

2. Let

\[
A = \begin{pmatrix} 0 & -1 & 2 & 1 & 0 \\ 0 & 1 & -2 & 0 & 1 \\ 2 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & -2 & -2 \end{pmatrix}.
\]

(a) Show that the reduced echelon form of \(A \) is

\[
\begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -2 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.
\]

(b) Use the result of part (a) to find (with explanation) the rank and nullity of \(A \).
3. In this problem, only the answers will be graded — no reasons needed.

(a) Given that the reduced echelon form of
\[
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 \\
5 & -1 & -1 & 0 & 1 & 0 \\
3 & -2 & -1 & 0 & 0 & 1
\end{pmatrix}
\]
is
\[
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & 1 & -1 \\
0 & 0 & 1 & 7 & -2 & 1
\end{pmatrix},
\]
find the inverse of
\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
5 & -1 & -1 & 0 \\
3 & -2 & -1 & 0
\end{pmatrix}.
\]

(b) Given that the reduced echelon form of
\[
\begin{pmatrix}
0 & 1 & 0 & 1 \\
2 & 0 & -4 & -2 \\
0 & -3 & 1 & 1
\end{pmatrix}
\]
is
\[
\begin{pmatrix}
1 & 0 & 0 & 7 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 4
\end{pmatrix},
\]
express \(\begin{pmatrix} -2 \\ 1 \end{pmatrix} \) as a linear combination of
\[
\begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}, \quad \text{and} \quad \begin{pmatrix} 0 \\ -4 \\ 1 \end{pmatrix}.
\]

4. Let \(E \) be the standard basis of \(\mathbb{R}^2 \), and let \(F \) be the basis \(\{ (1, 2), (2, 6) \} \).

(a) Find the change of basis matrix \(P \) from \(F \) to \(E \).

(b) Find the change of basis matrix \(Q \) from \(E \) to \(F \).
5. (a) Let

\[A = \begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}, \quad \text{and} \quad C = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}. \]

Given that the reduced echelon form of

\[\begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \]

is

\[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \]

are the vectors \(A, B, C \) independent in the vector space \(M_2 \)?

Be sure to give a brief indication of what the first matrix has to do with \(A, B, C \), and how the reduced echelon form gives you the answer.

(b) Let

\[p(x) = 1 + 2x + 3x^2, \quad q(x) = 1 + x^2, \quad \text{and} \quad r(x) = -1 + 4x + 3x^2. \]

Given that the reduced echelon form of

\[\begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 4 \\ 3 & 1 & 3 \end{pmatrix} \]

is

\[\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{pmatrix}, \]

do \(p, q, r \) span \(P_2 \)?

Be sure to give a brief indication of what the first matrix has to do with \(p, q, r \), and how the reduced echelon form gives you the answer.