Let V and W be sets. Officially, a function from V to W would be defined as a subset of the Cartesian product $V \times W$ satisfying certain properties. However, informally we regard a function from V to W as a rule which associates to each element of V a unique element of W. We write $f: V \to W$ to mean f is a function from V to W.

The element of W that a function $f: V \to W$ associates to an element $x \in V$ is the image of x under f, or the value of f at x, and denoted $f(x)$.

The main thing is that two functions $f, g: V \to W$ are equal precisely when they have the same values, i.e., $f = g$ if and only if for all $x \in V$ we have $f(x) = g(x)$.

Let $f: V \to W$.

1. V is the domain of f.
2. If $Z \subset V$, the image of Z under f is the following subset of W:
 \[f(Z) := \{ f(x) : x \in Z \} = \{ y \in W : \text{there exists } x \in Z \text{ such that } y = f(x) \} \]
3. If $Z \subset W$, the inverse image of Z under f is the following subset of V:
 \[f^{-1}(Z) := \{ x \in V : f(x) \in Z \} \]
4. The range of f is
 \[\text{ran } f := f(V) \]
5. f is one-to-one, written 1-1, if for all $x, y \in V$, if $f(x) = f(y)$ then $x = y$.
6. f is onto if $\text{ran } f = W$, i.e., if for all $y \in W$ there exists $x \in V$ such that $y = f(x)$.
7. f is a 1-1 correspondence if it is 1-1 onto (i.e., both 1-1 and onto).

Note that the domain of $f: V \to W$ is $f^{-1}(W)$. Also note that equal functions have the same domain. But more is true: if $f: V \to W$, then in this course we make the convention that both sets V and W be part of the function f. The set W is called the codomain of f, but we won’t need this word. To emphasize: if $f: V \to W$, $g: V \to Z$, and for all $x \in V$ we have $f(x) = g(x)$, but $W \neq Z$, then $f \neq g$.

The identity function on a set V is the function $I_V: V \to V$ defined by
\[I_V(x) = x. \]

Let V, W, and Z be sets, and let $f: V \to W$ and $g: W \to Z$. The composition of f and g is the function
\[g \circ f : V \to Z \]
defined by
\[(g \circ f)(x) = g(f(x)). \]
This can be visualized by the following “commutative diagram”:

\[
\begin{array}{ccc}
V & \xrightarrow{f} & W \\
& \searrow^{g \circ f} & \downarrow^{g} \\
& & Z.
\end{array}
\]

In this setting, we have:

1. If \(f \) and \(g \) are both 1-1, then so is \(g \circ f \);
2. If \(f \) and \(g \) are both onto, then so is \(g \circ f \);
3. If \(g \circ f \) is 1-1, then so is \(f \);
4. If \(g \circ f \) is onto, then so is \(g \).

If \(f : V \to W \) is invertible if it is 1-1 onto, in which case there is a unique inverse function \(f^{-1} : W \to V \) satisfying

\[
f^{-1} \circ f = I_V \quad \text{and} \quad f \circ f^{-1} = I_W.
\]

\(f^{-1} \) can be defined as follows: for each \(y \in W \), \(f^{-1}(y) \) is the unique \(x \in V \) such that \(f(x) = y \). Thus, for all \(x \in V \) and \(y \in W \) we have

\[
f(x) = y \quad \text{if and only if} \quad x = f^{-1}(y).
\]

This also characterizes the inverse function, i.e., there is no other function which is related to \(f \) in this way.

If \(f \) is an invertible function, then

\[
(f^{-1})^{-1} = f.
\]

If \(f \) and \(g \) are invertible composable functions, then

\[
(g \circ f)^{-1} = f^{-1} \circ g^{-1}.
\]