Proposition. Let V, W, and Z be vector spaces, and let $T \in \mathcal{L}(V,W)$ and $S \in \mathcal{L}(W,Z)$. Then the composition $S \circ T : V \to Z$ is linear.

For linear functions T and S as above, we usually write ST rather than $S \circ T$.

Proof. For $x, y \in V$ and $c \in \mathbb{R}$ we have

$$(ST)(x + y) = S(T(x) + T(y)) = S(T(x)) + S(T(y)) = (ST)(x) + (ST)(y)$$

and

$$(ST)(cx) = S(T(cx)) = S(cT(x)) = cS(T(x)) = c(ST)(x).$$

QED

Example. Let V and W be vector spaces, let $\{u_1, \ldots, u_n\}$ be a basis of V, and let $v_1, \ldots, v_n \in W$. Then the unique $T \in \mathcal{L}(V,W)$ taking the u_i’s to the corresponding v_i’s is the composition of the following two functions: the coordinate vector function

$$x \mapsto [x]_E : V \to \mathbb{R}^n$$

followed by the “linear combination function”

$$\begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \mapsto \sum_{i=1}^n c_i u_i : \mathbb{R}^n \to W.$$

Let V be a vector space and $T \in \mathcal{L}(V)$. We write

$$T^2 = TT,$$

and inductively we define

$$T^n = T(T^{n-1}) \quad \text{for } n = 3, 4, \ldots.$$

We also write $T^1 = T$ and $T^0 = I$.

Example. Let V be the vector space of polynomials of degree at most n, and let $D \in \mathcal{L}(V)$ be the differentiation operator: $D(f) = f'$. Then D^2 is the 2nd-derivative operator:

$$D^2(f) = f'',$$

etc. We have $D^{n+1} = 0$.

Proposition. Let U, V, W, and Z be vector spaces. Then:

1. For all $T \in \mathcal{L}(V,W)$ we have

$$I_Z T = TI_U = T, \quad 0T = 0, \quad \text{and} \quad T0 = 0.$$
2. For all \(T, S \in L(V, W) \), \(P \in L(U, V) \), and \(Q \in L(W, Z) \) we have
\[
(T + S)P = TP + SP \quad \text{and} \quad Q(T + S) = QT + QS.
\]
3. For all \(P \in L(U, V) \), \(T \in L(V, W) \), and \(S \in L(W, Z) \) we have
\[
(ST)P = S(TP).
\]
4. For all \(c \in \mathbb{R} \), \(T \in L(V, W) \), and \(S \in L(W, Z) \) we have
\[
c(ST) = (cS)T = S(cT).
\]

Note that in item 1, the first 0 is the zero function from \(W \) to \(Z \), the second is the zero function from \(V \) to \(Z \), the third is the zero function from \(U \) to \(V \), and the fourth is the zero function from \(U \) to \(W \). The notation for the identity functions is self-explanatory, but in the future we will often drop the subscript, so the vector space on which the identity function \(I \) operates will have to be determined from the context.

Proof. Exercise. \(\text{QED} \)

Example. As the above proposition shows, composition of linear functions should be regarded as a kind of multiplication. But it does not satisfy all the properties of multiplication of real numbers. For example, it is noncommutative: define \(T, S \in L(\mathbb{R}^2) \) by
\[
T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix} \quad \text{and} \quad S \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ 0 \end{pmatrix}.
\]

Then
\[
(TS) \begin{pmatrix} x \\ y \end{pmatrix} = T \left(S \begin{pmatrix} x \\ y \end{pmatrix} \right) = T \begin{pmatrix} y \\ 0 \end{pmatrix} = \begin{pmatrix} y \\ 0 \end{pmatrix}
\]
and
\[
(ST) \begin{pmatrix} x \\ y \end{pmatrix} = S \left(T \begin{pmatrix} x \\ y \end{pmatrix} \right) = S \begin{pmatrix} x \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.
\]
In particular, \((TS) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}\) and \((ST) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}\), so \(TS \neq ST\).

Another interesting phenomenon exhibited by this example: we have \(S \neq 0 \) and \(T \neq 0 \) but \(ST = 0 \). This also shows that there is no “cancellation law” for composition of linear functions: we can have \(T \neq 0 \) and \(ST = RT \) but \(S \neq R \) (in this case with \(R = 0 \)).

Matrix multiplication.

Proposition. Let
\[
E = \{u_1, \ldots, u_n\}, \quad F = \{v_1, \ldots, v_m\}, \quad \text{and} \quad G = \{w_1, \ldots, w_l\}
\]
be bases for vector spaces \(V, W, \) and \(Z \), respectively, and let \(T \in L(V, W) \) and \(S \in L(W, Z) \). Also let \(B, A, \) and \(C \) be the matrices representing \(T \) relative to \(E \) and \(F \), \(S \) relative to \(F \).
and G, and ST relative to E and G, respectively. Then for each $i = 1, \ldots, n$ and $j = 1, \ldots, l$ we have

$$C_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj}.$$

Proof. This follows from the following computation: for each $j = 1, \ldots, n$ we have

$$(ST)(u_j) = S(T(u_j))$$

$$= S\left(\sum_{k=1}^{m} B_{kj} v_k\right)$$

$$= \sum_{k=1}^{m} B_{kj} S(v_k)$$

$$= \sum_{k=1}^{m} B_{kj} \sum_{i=1}^{l} A_{ik} w_i$$

$$= \sum_{i=1}^{l} \left(\sum_{k=1}^{m} A_{ik} B_{kj}\right) w_i.$$

QED

We use the above proposition to motivate the definition of matrix multiplication: for $A \in M_{m \times n}$ and $B \in M_{n \times l}$ we define the product AB to be the $m \times l$ matrix C with entries

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \quad \text{for } i = 1, \ldots, m, j = 1, \ldots, l.$$

Thus, matrix multiplication is defined precisely so that, if matrices A and B represent composable linear functions S and T, then the matrix product AB represents the composition ST.

Example. Define $T \in L(\mathbb{R}^3, \mathbb{R})$ by $T \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = 2x - 3y + z$ and $S \in L(\mathbb{R}, \mathbb{R}^2)$ by $S(t) = \left(\begin{array}{c} 4t \\ -3t \end{array}\right)$. Relative to the standard bases, the matrices representing T and S are

$$A = \begin{pmatrix} 2 & -3 & 1 \\ \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 4 \\ -3 \end{pmatrix},$$

respectively. Thus the matrix representing the composition $ST \in L(\mathbb{R}^3, \mathbb{R}^2)$ is

$$BA = \begin{pmatrix} 4 \\ -3 \end{pmatrix} \begin{pmatrix} 2 & -3 & 1 \\ \end{pmatrix} = \begin{pmatrix} 8 & -12 & 4 \\ -6 & 9 & -3 \end{pmatrix}.$$
Alternatively, we can first compose the functions T and S:

$$(ST) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = S \left(T \begin{pmatrix} x \\ y \\ z \end{pmatrix} \right) = S(2x - 3y + z) = \begin{pmatrix} 8x - 12y + 4z \\ -6x + 9y - 3z \end{pmatrix},$$

and then compute

$$(ST) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 8 \\ -6 \end{pmatrix}, \quad (ST) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -12 \\ 9 \end{pmatrix}, \quad \text{and} \quad (ST) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -3 \end{pmatrix},$$

so the matrix representing ST is

$$\begin{pmatrix} 8 & -12 & 4 \\ -6 & 9 & -3 \end{pmatrix}.$$

Clearly the first method involved less work.

Note that for $A \in M_{m \times n}$ and $B \in M_{n \times l}$ the ij-entry of AB can be regarded as the product of the ith row matrix of A and the jth column matrix of B:

$$(AB)_{ij} = (A_{i1} \quad A_{i2} \quad \cdots \quad A_{in}) \begin{pmatrix} B_{1j} \\ B_{2j} \\ \vdots \\ B_{nj} \end{pmatrix} = \sum_{k=1}^{n} A_{ik} B_{kj}.$$

Also, the jth column of AB is the product of A and the jth column of B:

$$\begin{pmatrix} (AB)_{1j} \\ \vdots \\ (AB)_{mj} \end{pmatrix} = A \begin{pmatrix} B_{1j} \\ \vdots \\ B_{mj} \end{pmatrix}.$$

Equivalently, writing B in terms of its columns:

$$B = \begin{pmatrix} b_1 & \cdots & b_l \end{pmatrix},$$

where each b_i is an $n \times 1$ matrix, we have

$$AB = \begin{pmatrix} Ab_1 & \cdots & Ab_l \end{pmatrix}.$$

Similarly for the rows: writing A in terms of its row matrices:

$$A = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix},$$
where each a_j is a $1 \times n$ matrix, we have

$$AB = \begin{pmatrix} a_1 B \\ \vdots \\ a_m B \end{pmatrix},$$

i.e., the ith row of AB is the ith row of A times B.

Suppose A is $m \times n$ and x is $n \times 1$, i.e., $x \in \mathbb{R}^n$. Write A in terms of its columns:

$$A = \begin{pmatrix} a_1 & \cdots & a_n \end{pmatrix}$$

and write $x = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$. Then

$$Ax = \sum_{i=1}^n c_i a_i,$$

the linear combination of the columns of A whose coefficients are the coordinates of the vector x. Similarly for rows. Thus, for any multipliable matrices A and B, the columns of AB are linear combinations of the columns of A, and the rows of AB are linear combinations of the rows of B.

Example. Let’s illustrate the above remarks with the matrices

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 3 & 2 \\ -2 & 0 \end{pmatrix}.$$

We have

$$AB = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 1 & 6 \end{pmatrix}.$$

The 21-entry of AB is

$$(3 \ 4) \begin{pmatrix} 3 \\ -2 \end{pmatrix} = 1.$$

The 1st column of AB is

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 3 \end{pmatrix} - 2 \begin{pmatrix} 2 \\ 4 \end{pmatrix}.$$

The 2nd row of AB is

$$(3 \ 4) \begin{pmatrix} 3 & 2 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 6 \end{pmatrix} = 3 \begin{pmatrix} 3 \\ 2 \end{pmatrix} + 4 \begin{pmatrix} -2 \\ 0 \end{pmatrix}.$$

Because of the correspondence between linear functions and matrices, we immediately deduce the following properties of matrix multiplication:

Proposition. For all matrices where the operations are defined, we have:

1. $IA = AI = A$;
2. $0A = 0$ and $A0 = 0$;
3. $(A + B)C = AC + BC$;
4. $A(B + C) = AB + AC$;
5. $(AB)C = A(BC)$;
6. $t(AB) = (tA)B = A(tB)$ (where $t \in \mathbb{R}$).

Theorem. Let V and W be finite-dimensional vector spaces, with bases E and F, respectively, let $T \in L(V, W)$, and let $x \in V$. Let A be the matrix representing T relative to E and F. Then for all $x \in V$ we have

$$[T(x)]_F = A[x]_E.$$

Proof. Let $E = \{u_1, \ldots, u_n\}$. Since both sides are linear functions of x, it suffices to verify the equation for $x = u_1, \ldots, u_n$. For each $j = 1, \ldots, n$, if $x = u_j$, the left-hand side is the jth column of A. On the right-hand side, we have $[u_j]_E = e_j$ (the jth standard basis vector of \mathbb{R}^n), and by the properties of matrix multiplication the product Ae_j is the jth column of A.

QED

Example. Let V be the vector space of polynomials of degree at most 3, and define $T: V \to \mathbb{R}^2$ by

$$T(f) = \begin{pmatrix} f(0) \\ f(2) \end{pmatrix}.$$

Let E and F be the standard bases of V and \mathbb{R}^2, respectively. We have

$$T(1) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad T(x) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \quad T(x^2) = \begin{pmatrix} 0 \\ 4 \end{pmatrix}, \quad \text{and} \quad T(x^3) = \begin{pmatrix} 0 \\ 8 \end{pmatrix},$$

so the matrix representing T relative to the bases E and F is

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 4 & 8 \end{pmatrix}.$$

Let $f = 3 - 2x + x^3$. Then

$$[f]_E = \begin{pmatrix} 3 \\ -2 \\ 0 \\ 1 \end{pmatrix},$$

so we have

$$A[f]_E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 4 & 8 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 7 \end{pmatrix}.$$

On the other hand,

$$f(0) = 3 \quad \text{and} \quad f(2) = 3 - 2(2) + 2^3 = 7,$$
so by direct calculation we have

\[T(f) = \begin{pmatrix} 3 \\ 7 \end{pmatrix}. \]

Since the vector \((\frac{3}{7})\) \(\in\) \(\mathbb{R}^2\) is equal to its coordinate vector relative to the standard basis \(F\), we have verified the above theorem in this case.

Example. Let \(A \in M_{m \times n}\), and define \(T \in L(\mathbb{R}^n, \mathbb{R}^m)\) by \(T(x) = Ax\). Then \(A\) is the matrix representing \(T\) relative to the standard bases.