Be sure to review the “Preliminaries on sets”, the “Preliminaries on numbers”, and the “Preliminaries on functions”.

The Euclidean plane \mathbb{R}^2 and its properties form a paradigm for a very general type of mathematical structure which has wide applications. Here is the abstract definition:

Vector spaces. A *vector space* is a set V equipped with two operations:

- **Addition:** for all $x, y \in V$ there is an element $x + y \in V$, called the *sum* of x and y;
- **Scalar multiplication:** for all $c \in \mathbb{R}$ and $x \in V$ there is an element $cx \in V$, called the *scalar multiple* of x by c,

which satisfy the following properties:

1. For all $x, y \in V$ we have
 \[x + y = y + x. \]
2. For all $x, y, z \in V$ we have
 \[(x + y) + z = x + (y + z). \]
3. There exists $0 \in V$ such that for all $x \in V$ we have
 \[x + 0 = x. \]
4. For all $x \in V$ there exists $-x \in V$ such that
 \[x + (-x) = 0. \]
5. For all $c, d \in \mathbb{R}$ and $x \in V$ we have
 \[(c(dx)) = (cd)x. \]
6. For all $c \in \mathbb{R}$ and $x, y \in V$ we have
 \[c(x + y) = cx + cy. \]
7. For all $c, d \in \mathbb{R}$ and $x \in V$ we have
 \[(c + d)x = cx + dx. \]
8. For all $x \in V$ we have
 \[1x = x. \]
The elements of V are called *vectors*, and (as mentioned before) the elements of \mathbb{R} are called *scalars*.

In 3 above, we use the notation 0 to signify that we have singled out a particular vector with the indicated property. But just as for \mathbb{R}^2, this vector is unique: if we have $x + 0' = x$ for all $x \in V$, then

$$0 = 0 + 0' = 0' + 0 = 0'.$$

0 is called the *zero vector* of V.

Similarly, in 4 above we use the notation $-x$ to indicate a vector with the indicated property, but we make no claim of uniqueness; in fact, it follows from the definition of vector space that this vector is uniquely determined by x (exercise). $-x$ is called the *negative* of x.

As we mentioned in the discussion of \mathbb{R}^2, the reason for listing the above 8 properties is that they imply all other properties of the operations of addition and scalar multiplication. For example:

Proposition. Let V be a vector space.

1. For all $x, y, z \in V$, if $x + y = x + z$ then $y = z$.
2. For all $c \in \mathbb{R}$ we have $c0 = 0$ (here 0 is the zero vector in V).
3. For all $x \in V$ we have $0x = 0$ (here the first 0 is in \mathbb{R} and the second is in V).
4. For all $x \in V$ we have $-x = (-1)x$.

Subtraction of vectors is defined by

$$x - y := x + (-y) \quad \text{for } x, y \in V.$$

In vector expressions containing both addition and scalar multiplication, scalar multiplication takes precedence (*i.e.*, is performed first) unless parentheses override; for example, if $a, b \in \mathbb{R}$ and $x, y \in V$ then $ax + by$ is the sum of the vectors ax and by.

Here are some other examples of vector spaces:

Example. This example generalizes \mathbb{R}^2. Let $n \in \mathbb{N}$, and put

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} : x_1, \ldots, x_n \in \mathbb{R} \right\}.$$

For each $i = 1, \ldots, n$, x_i is the *ith coordinate* of $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.
Define addition and scalar multiplication in \mathbb{R}^n by
\[
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix} + \begin{pmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{pmatrix} = \begin{pmatrix}
 x_1 + y_1 \\
 \vdots \\
 x_n + y_n
\end{pmatrix}
\]
\[
c\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix} = \begin{pmatrix}
 cx_1 \\
 \vdots \\
 cx_n
\end{pmatrix}.
\]
The zero vector in \mathbb{R}^n is
\[
\begin{pmatrix}
 0 \\
 \vdots \\
 0
\end{pmatrix},
\]
and the negative of a vector is given by
\[
-\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix} = \begin{pmatrix}
 -x_1 \\
 \vdots \\
 -x_n
\end{pmatrix}.
\]

Example. Let $m, n \in \mathbb{N}$. An $m \times n$ matrix is a rectangular array of real numbers with m rows and n columns, so that if A is an $m \times n$ matrix then A has the form
\[
A = \begin{pmatrix}
 A_{11} & A_{12} & \cdots & A_{1n} \\
 A_{21} & A_{22} & \cdots & A_{2n} \\
 \cdots & \cdots & \cdots & \cdots \\
 A_{m1} & A_{m2} & \cdots & A_{mn}
\end{pmatrix}.
\]

A_{ij} is called the ij-entry of A. We also write $A = (A_{ij})$. The set of all $m \times n$ matrices is denoted by $M_{m \times n}$. Also, we write $M_n = M_{n \times n}$.

Define addition and scalar multiplication in $M_{m \times n}$ as follows: if $A, B \in M_{m \times n}$, then $C = A + B$ is the $m \times n$ matrix with ij-entry
\[
C_{ij} = A_{ij} + B_{ij},
\]
and if $c \in \mathbb{R}$ then $D = cA$ is the $m \times n$ matrix with ij-entry
\[
D_{ij} = cA_{ij}.
\]
We can write $(A_{ij}) + (B_{ij}) = (A_{ij} + B_{ij})$ and $(cA_{ij}) = (cA_{ij})$.

Then zero vector is the $m \times n$ matrix with all entries equal to 0, and negatives are given by
\[
-(A_{ij}) = (-A_{ij}).
\]

Note that $M_{n \times 1} = \mathbb{R}^n$ as vector spaces.
Example. A polynomial is an expression of the form
\[f(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n, \]
where \(n \) is a nonnegative integer and each \(a_i \in \mathbb{R} \). If \(a_n \neq 0 \) then \(f(x) \) has degree \(n \). In particular, nonzero real numbers are polynomials of degree 0. The degree of the zero polynomial is defined to be \(-1\) for technical reasons. The \(a_i \)'s are the coefficients of \(f(x) \).

Define addition and scalar multiplication of polynomials by:
\[
(a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n) + (b_0 + b_1 x + b_2 x^2 + \cdots + b_n x^n) = (a_0 + b_0) + (a_1 + b_1) x + (a_2 + b_2) x^2 + \cdots + (a_n + b_n) x^n
\]
and
\[
c(a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n) = ca_0 + ca_1 x + ca_2 x^2 + \cdots + ca_n x^n.
\]
Note that to add two polynomials, if one has smaller degree than the other then extra terms with coefficient 0 must be (tacitly) added to use the above definition.

The zero polynomial is the scalar 0, and negatives are given by
\[
-(a_0 + a_1 x + \cdots + a_n x^n) = -a_0 - a_1 x - \cdots - a_n x^n.
\]

Not only is the set of all polynomials a vector space, but we get other vector spaces by restricting the degree: for each \(n \in \mathbb{N} \) we can (and will) consider the vector space of all polynomials of degree at most \(n \).

Example. Let \(X \) be a set. Then the set of all functions from \(X \) to \(\mathbb{R} \) is a vector space with the pointwise operations: if \(f, g : X \to \mathbb{R} \) and \(c \in \mathbb{R} \) then addition and scalar multiplication are defined by
\[
(f + g)(x) := f(x) + g(x)
\]
\[
(cf)(x) := cf(x).
\]
Many important vector spaces consist of functions, for example the vector space of all continuous functions on an interval \([a, b]\), or the vector space of all differentiable functions on an interval \([a, b]\).