Exercise 1. In each part, decide whether u is an eigenvector of T, and if so determine the associated eigenvalue:

(a) $T = L_A$ with $A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$, $u = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

(b) same T as part (a), $u = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

(c) same T as part (a), $u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

(d) $T = L_A$ with $A = \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix}$, $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

(e) same T as part (d), $u = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

(f) $T \in L(M_2)$ defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$, $u = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$

(g) same T as part (f), $u = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Exercise 2. Define $T \in L(\mathbb{R}^n)$ by

$$T \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} x_2 \\ x_3 \\ \vdots \\ x_n \\ x_1 \end{pmatrix}.$$

Find an eigenvector with associated eigenvalue 1.

Exercise 3. Let $A \in M_n$ and $\lambda \in \mathbb{R}$, and assume that the entries in each row of A sum to λ. Prove that λ is an eigenvalue of A.

Exercise 4. Let $T \in L(\mathbb{R}^2)$ be rotation by $\pi/3$. Is T diagonalizable? Why or why not?

Exercise 5. Let V be a 3-dimensional vector space, $T \in L(V)$, and $\{x_1, x_2, x_3\}$ a basis of V. Assume that x_1 and x_2 are eigenvectors of T with associated eigenvalue 2, and x_3 is an eigenvector with associated eigenvalue -5.

(a) What is the matrix representing T relative to the basis $\{x_1, x_2, x_3\}$?
(b) What is the matrix representing T relative to the basis $\{x_1, x_3, x_2\}$?
Exercise 6. Let
\[A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \quad \text{and} \quad P = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}. \]

(a) Compute \(AP \).

(b) Use the result of part (a) to determine whether \(P \) diagonalizes \(A \).

Exercise 7. Let \(V \) be the vector space of polynomials of degree at most 1, let \(T \in L(V) \), let \(E \) be the basis \(\{1 + x, 2 - x\} \) of \(V \), let \(A \) be the matrix representing \(T \) relative to \(E \), and let
\[P = \begin{pmatrix} 3 & 4 \\ -2 & -1 \end{pmatrix}. \]
Assume that \(P^{-1}AP \) is diagonal. Find a basis of \(V \) which diagonalizes \(T \).

Exercise 8.

(a) Prove that every upper triangular matrix has an eigenvector.

(b) Prove that every lower triangular matrix has an eigenvector.

Exercise 9. Let \(V \) be a vector space and \(T \in L(V) \), and let \(x \) be an eigenvector of \(T \) with associated eigenvalue \(\lambda \).

(a) Prove using induction that if \(n \in \mathbb{N} \) then \(x \) is an eigenvector of \(T^n \) with associated eigenvalue \(\lambda^n \).

(b) Prove that if \(T \) is invertible then \(x \) is an eigenvector of \(T^{-1} \) with associated eigenvalue \(1/\lambda \).

Exercise 10. Use part (a) of the preceding exercise to prove that if there exists \(n \in \mathbb{N} \) such that \(T^n = 0 \) then every eigenvalue of \(T \) is 0.