Exercise 1. Let
\[W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x = y \right\}. \]
Prove that \(W \) is a subspace of \(\mathbb{R}^3 \).

Exercise 2. Let
\[W = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : x^2 = y^2 \right\}. \]
Is \(W \) a subspace of \(\mathbb{R}^2 \)? Prove your answer.

Exercise 3. Prove that the set of diagonal \(n \times n \) matrices is a subspace of \(M_n \).

Exercise 4. Let \(V \) be the vector space of all functions from \(\mathbb{R} \to \mathbb{R} \). In each part, determine whether the set \(W \) is a subspace of \(V \), and prove your answer:

(a)
\[W = \{ f \in V : f(1) = 2 \}. \]
(b)
\[W = \{ f \in V : f(1) = 2f(0) \}. \]
(c)
\[W = \{ f \in V : f(0) = 0 \text{ and } f(1) = 0 \}. \]
(d)
\[W = \{ f \in V : f(0) = 0 \text{ or } f(1) = 0 \}. \]

Exercise 5. Let \(V \) be the vector space of polynomials of degree at most 2, and let \(W \) be the set of polynomials of degree 2. Prove that \(W \) is not a subspace of \(V \).

Exercise 6. Let
\[W = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : x \neq y \right\}. \]
Prove that \(W \) is not a subspace of \(\mathbb{R}^2 \).

Exercise 7. Let \(W \) and \(Z \) be subspaces of a vector space \(V \). Prove that \(W \cap Z \) is a subspace of \(V \).

Exercise 8. Let \(W \) and \(Z \) be subspaces of a vector space \(V \). Prove that
\[W + Z := \{ x + y : x \in W \text{ and } y \in Z \} \]
is a subspace of \(V \).