MAT 300 Notes on Section 4.2
Instructor: John Quigg

Note: we will not cover composition of relations in this chapter!

A relation from A to B is a subset of $A \times B$.
If R is a relation from A to B, then:

The domain of R is

$$\text{Dom}(R) = \{ x \in A \mid \text{there exists } y \in B \text{ such that } (x, y) \in R \}.$$

The range of R is

$$\text{Ran}(R) = \{ y \in B \mid \text{there exists } x \in A \text{ such that } (x, y) \in R \}.$$

Then inverse of R is

$$R^{-1} = \{ (y, x) \in B \times A \mid (x, y) \in R \}.$$

Note R^{-1} is a relation from B to A.

Actually, a relation is just a set of ordered pairs — we don’t always care what the A and B are. Thus, if R is a relation, then for all x we have:

- $x \in \text{Dom}(R)$ if and only if there exists y such that $(x, y) \in R$;
- $x \in \text{Ran}(R)$ if and only if there exists y such that $(y, x) \in R$.

Also, for every ordered pair (x, y), it makes sense to ask whether $(x, y) \in R$.