• Be sure to show all your work!
• Be sure to give reasons for your answers!
• Points will probably be taken off if you do not give a clear indication of
 the method and write your solution neatly, in order, and clearly indicate
 your final answer.
• Points may be taken off for a correct answer with a mistake in the sup-
 porting work.
• No books, notes or calculators of any kind are permitted on the test.
• Write each solution in the space provided, not on scratch paper.
• If you need more room, write on the back of the page.
• Time limit: 1.5 hours (90 minutes). Points may be deducted for exceeding
 this limit.
1. **In this problem only**, you do not need to give reasons, and only the answer will be graded:

(a) Find the linearization of the function \(f(x,y) = 3x + y^2 \) at the point \((1,1)\).

(b) A few contours for a function \(f \) are shown in the following diagram. Is \(\frac{\partial f}{\partial x} \) positive or negative at the point \(P \)?

(c) Write, but *do not evaluate*, an integral for the length of the curve
\[
\mathbf{r}(t) = (t,t^2,t^3), \quad 0 \leq t \leq 1
\]

(d) Which of the following is a contour map of \(f(x,y) = x + y^2 \)?

![Contour Maps]

A: ![Contour Map A] B: ![Contour Map B]

(e) Is the function \(f(x,y,z) = \frac{x \ln y}{z^3} \) continuous at the point \((1,2,3)\)?

(f) The following diagram shows part of the path of a particle, as well as the unit tangent \(\mathbf{T} \), the unit normal \(\mathbf{N} \), and the acceleration \(\mathbf{a} \) at a point \(P \). Is the particle speeding up or slowing down at the point \(P \)?

![Diagram]
2. Consider a particle with position function \(\mathbf{r}(t) = (t, e^{2t}, \sin t) \). At \(t = 0 \), find the following:

(a) the velocity

(b) the acceleration

(c) the curvature
3. Let \(f(x, y) = \sin\left(\frac{\pi}{3} x + y\right) \), and let \(P \) be the point \(\left(1, 0, \frac{\sqrt{3}}{2}\right) \) and \(Q \) the point \((1,0) \).

(a) Find the equation of the tangent plane to the surface \(z = f(x,y) \) at the point \(P \).

(b) Find the directional derivative of \(f \) at the point \(Q \) in the direction of the vector \((1,1) \).
4. Consider the function \(f(x, y) = x^2 + y^2 + x^2y + 4 \).

(a) Show that the \((-\sqrt{2}, -1)\) is a critical point of \(f \)

(b) At the critical point \((-\sqrt{2}, -1)\), does \(f \) have a local maximum, local minimum, saddle point, or none of these?

(c) At the critical point \((0, 0)\), does \(f \) have a local maximum, local minimum, saddle point, or none of these? (You do not need to show that \((0, 0)\) is a critical point.)
5. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint:

\[f(x, y) = x^2 y; \quad x^2 + 2y^2 = 6 \]
6. Consider the following table of values of a continuous function \(f \) on the rectangle \(R = [0, 8] \times [1, 5] \):

<table>
<thead>
<tr>
<th>(y)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.5</td>
<td>-2</td>
<td>-4.5</td>
<td>-8</td>
<td>-12.5</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>0</td>
<td>-2.5</td>
<td>-6</td>
<td>-10.5</td>
</tr>
<tr>
<td>4</td>
<td>3.5</td>
<td>2</td>
<td>-0.5</td>
<td>-4</td>
<td>-8.5</td>
</tr>
<tr>
<td>6</td>
<td>5.5</td>
<td>4</td>
<td>1.5</td>
<td>-2</td>
<td>-6.5</td>
</tr>
<tr>
<td>8</td>
<td>7.5</td>
<td>6</td>
<td>3.5</td>
<td>0</td>
<td>-4.5</td>
</tr>
</tbody>
</table>

Use the Midpoint Rule with \(m = n = 2 \) to estimate \(\iint_R f(x, y) \, dA \).