• Be sure to show all your work!
• Be sure to give reasons for your answers!
• Points will probably be taken off if you do not give a clear indication of the method and write your solution neatly, in order, and clearly indicate your final answer.
• Points may be taken off for a correct answer with a mistake in the supporting work.
• No books, notes or calculators of any kind are permitted on the test.
• Write each solution in the space provided, not on scratch paper.
• If you need more room, write on the back of the page.
• Time limit: 1.5 hours (90 minutes). Points may be deducted for exceeding this limit.
1. **In this problem only**, just circle the correct answer — you do not need to give reasons, and only the answer will be graded:

(a) If the augmented matrix of a system is

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

how many solutions does the system have?

A: one B: none C: infinitely many

(b) If \(A \) is \(5 \times 8 \) and \(B \) is \(3 \times 5 \), then \(B^T A \) exists.

True False

(c) For any \(4 \times 3 \) matrix \(A \) and any \(b \in \mathbb{R}^4 \), the system \(A^T Ax = A^T b \) is consistent.

True False

(d) If \(A \) is an invertible matrix with all integer entries, and \(\det(A) = 1 \), then \(A^{-1} \) also has all integer entries.

True False

(e) It is impossible for 0 to be an eigenvalue of a matrix.

True False

(f) The vectors \((1, -1, 1, 1)\) and \((1, 2, 1, -1)\) in \(\mathbb{R}^4 \) are orthogonal.

True False
2. In each part of this problem, you are given a transformation T from one Euclidean space to another. Your job is to determine whether T is linear.

(a) $T(x, y) = (x^2, y)$

(b) $T(x, y) = (2x + y, x)$
3. Suppose $T: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ is linear and $T(v_i) = w_i$ for $i = 1, 2$, where

\[
\begin{align*}
 v_1 &= (1, 2) & v_2 &= (1, 3) \\
 w_1 &= (1, 1, 0) & w_2 &= (2, -1, 1).
\end{align*}
\]

Find the matrix A such that $T(x) = Ax$.
4. Consider the linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^4$ such that $T(x) = Ax$, where $A = \begin{bmatrix} 1 & 2 & 1 & -2 & 1 \\ -1 & -2 & 1 & -4 & 2 \\ 0 & 0 & 2 & -6 & 3 \\ 2 & 4 & 1 & -1 & 5 \end{bmatrix}$.

Given that reduced echelon form of A is

$$
\begin{bmatrix}
1 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix},
$$

(a) Find a basis for the range of T.

(b) Find a basis for the kernel of T.
5. **Use elementary row operations** to find the inverse of the matrix \(A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix} \). Be sure to put the final answer in the indicated location!

\[
A^{-1} = \]

6. Let \(A = \begin{bmatrix} 2 & 5 & 1 & 0 \\ 0 & 3 & -1 & 2 \\ 0 & 0 & 4 & 6 \\ 0 & 0 & 0 & -7 \end{bmatrix} \).

(a) What are the eigenvalues of \(A \)?

(b) Is \(A \) diagonalizable? (Just circle the correct answer.)

 yes no

(c) If your answer above was “yes”, then write a diagonal matrix \(D \) similar to \(A \), while if your answer was “no” then give a brief reason.
7. (a) Use the Gram-Schmidt Algorithm to convert the given basis \(\{ \mathbf{v}_i \} \) into an orthogonal basis \(\{ \mathbf{u}_i \} \). Be sure to write the final form of your vectors \(\mathbf{u}_1, \mathbf{u}_2 \) in the indicated locations!

\[
\mathbf{v}_1 = (1,1,1,1) \quad \mathbf{v}_2 = (1,1,1,0)
\]

\[
\mathbf{u}_1 = \quad \mathbf{u}_2 =
\]

(b) If \(A \) is a \(4 \times 7 \) matrix with rank 4, then there exists a vector \(\mathbf{b} \) such that the system \(Ax = \mathbf{b} \) is inconsistent. Give a brief reason.

True \quad False

(c) If \(A \) and \(B \) are \(n \times n \) matrices such that \(AB \) is invertible, then \(A \) is invertible. Give a brief reason.

True \quad False