Hyperbolic Geometry on the Figure-Eight Knot Complement

Alex Gutierrez

Arizona State University

December 10, 2012
Hyperbolic Space

Hyperbolic space \mathbb{H}^n is the unique complete simply-connected Riemannian n-manifold with all sectional curvatures being -1.
Hyperbolic Space

Hyperbolic space \mathbb{H}^n is the unique complete simply-connected Riemannian n-manifold with all sectional curvatures being -1.

We can use the upper half space model of hyperbolic space: $\mathbb{H}^n := \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n : x_n > 0\}$ with metric $\|x\|_H := \frac{\|x\|_E}{x_n}$, where $\|\cdot\|_E$ is the standard Euclidean metric.
Hyperbolic Space

We can use the upper half space model of hyperbolic space:
\[\mathbb{H}^n := \{(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n : x_n > 0\} \]
with metric
\[\|x\|_H := \frac{\|x\|_E}{x_n}, \]
where \(\| \cdot \|_E \) is the standard Euclidean metric.

Figure: Picture Credit: Wikipedia.org
Hyperbolic Space

We can use the upper half space model of hyperbolic space:
\[\mathbb{H}^n := \{(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n : x_n > 0\} \]
with metric \(\|x\|_H := \frac{\|x\|_E}{x_n} \), where \(\|\cdot\|_E \) is the standard Euclidean metric.

The geodesics in this space are arcs of circles perpendicular to the plane \(x_n = 0 \) and vertical lines.

Figure: Picture Credit: Wikipedia.org
Hyperbolic Space

Hyperbolic space \mathbb{H}^n is the unique complete simply-connected Riemannian n-manifold with all sectional curvatures being -1.

Hyperbolic n-manifolds

Hyperbolic n-manifolds are the Riemannian manifolds such that each point has a neighborhood isometric to an open subset of \mathbb{H}^n.
In this talk I will show that the figure-eight knot complement is a hyperbolic manifold.
Gluing Two Tetrahedra

- We can glue the following tetrahedra together to get a cell complex M. The vertices of the tetrahedra are all mapped to a single vertex v. We saw in class that M is not a manifold because every neighborhood of v has a neighborhood homeomorphic to a cone on a torus.
However, $M \setminus \{v\}$ is a manifold (it is easy to see that every other point on M has a Euclidean neighborhood).
Gluing Two Tetrahedra

Theorem

\(M \setminus \{v\} \) is homeomorphic to \(S^3 - L \), where \(L \) is the figure-eight knot.
Construcfing a homeomorphic cell complex

- Define a 1-complex $K^1 \subseteq S^3$ using the following diagram:

Figure: The cell complex K^1.
Constructing a homeomorphic cell complex

- Attach four 2-cells to K^1 to get a 2-complex K^2.

Figure: The 2-cells A, B, C, and D.
There is a homeomorphism F taking $S^3 \setminus K^1$ to the complement of the following cell complex K^1_1:

![Cell Complex K^1_1]

Figure: The cell complex K^1_1
The homeomorphism F

F maps neighborhoods of the 1-complexes 1 and 2 as shown in this diagram and leaves the rest of $S^3 \setminus K^1$ unchanged.
This homeomorphism takes the four 2-cells of K^2 ($A, B, C, \text{ and } D$) to the following diagram. Since the image of $A \cup B \cup C \cup D$ under the homeomorphism F is a plane, the complement to $S^3 \setminus K^2$ is two open 3-balls.
We can view these open 3-balls as the interior of two 3-cells in order to extend K^2 to a cell complex K^3 for S^3. The boundaries of the 3-cells are attached to K^2 according to the following diagram.
The 0-cells and the 1-cells 3, 4, 5, and 6 collectively form the figure-eight knot L. By identifying all of these to a single point x and then removing x we get a space homeomorphic to $S^3 \setminus L$, the figure-eight knot complement.
All that remains is to show that the cell complex that left over after collapsing these points is our original cell complex M obtained by gluing two tetrahedron.
Hyperbolic Polyhedron

Definition

A hyperbolic ideal polyhedron is a subset of \mathbb{H}^n that is the intersection of a finite collection of half spaces in \mathbb{H}^n whose vertices are all on S^{n-1}_{∞}. A facet of a polyhedron P is the intersection of P with a codimension one hyperplane T such that exactly one component of $\mathbb{H}^n \setminus T$ is disjoint from P.

Figure: Diagram credited to Vladimir Bulatov, Oregon State University.
Putting a hyperbolic geometry on $S^3 \setminus L$

Lemma

Let $F_1, F_2,$ and F_3 be three facets of an ideal tetrahedron in \mathbb{H}^3. Let β_{12} be the interior angle between F_1 and F_2 and define β_{23}, β_{31} similarly. Then $\beta_{12} + \beta_{23} + \beta_{31} = \pi$.

Proof:

Since these three facets have a point at infinity, they are all Euclidean planes in the upper half space \mathbb{H}^3. Then $\beta_{12}, \beta_{23},$ and β_{31} form the interior angles of a Euclidean triangle.
Putting a hyperbolic geometry on $S^3\setminus L$

Lemma

Let $F_1, F_2,$ and F_3 be three facets of an ideal tetrahedron in \mathbb{H}^3. Let β_{12} be the interior angle between F_1 and F_2 and define β_{23}, β_{31} similarly. Then $\beta_{12} + \beta_{23} + \beta_{31} = \pi$.

Proof:

Since these three facets have a point at infinity, they are all Euclidean planes in the upper half space \mathbb{H}^3. Then $\beta_{12}, \beta_{23},$ and β_{31} form the interior angles of a Euclidean triangle.

- Note then that if our ideal tetrahedron is regular (symmetric) then each of the angles $\beta_{ij} = \pi/3$.
Putting a hyperbolic geometry on $S^3 \setminus L$

Lemma

Let F_1, F_2, and F_3 be three facets of an ideal tetrahedron in \mathbb{H}^3. Let β_{12} be the interior angle between F_1 and F_2 and define β_{23}, β_{31} similarly. Then $\beta_{12} + \beta_{23} + \beta_{31} = \pi$.

- Note then that if our ideal tetrahedron is *regular* (symmetric) then each of the angles $\beta_{ij} = \pi/3$.
- For each point x of M lying in a one cell the two cells of M are glued to x six times. Therefore the six interior angles around x sum to 2π and so every point of $M \setminus \{v\}$ has a hyperbolic neighborhood.
References

