1. (1 pt)
Consider the integral \(\int_0^{49} \int_0^{6\sqrt{x}} f(x,y) \, dy \, dx \). Sketch the region of integration and change the order of integration.
\[
\int_a^b \int_{g_1(y)}^{g_2(y)} f(x,y) \, dx \, dy
\]
\(a = \quad b = \quad g_1(y) = \quad g_2(y) = \quad
\)

2. (1 pt)
Consider the integral \(\int_0^1 \int_{8x}^{8x} f(x,y) \, dy \, dx \). Sketch the region of integration and change the order of integration.
\[
\int_a^b \int_{g_1(y)}^{g_2(y)} f(x,y) \, dx \, dy
\]
\(a = \quad b = \quad g_1(y) = \quad g_2(y) = \quad
\)

3. (1 pt) Find the volume of the solid enclosed by the paraboloids \(z = 1 \left(x^2 + y^2 \right) \) and \(z = 2 - 1 \left(x^2 + y^2 \right) \).

4. (1 pt)
Using polar coordinates, evaluate the integral \(\int \int_R \sin(x^2 + y^2) \, dA \) where \(R \) is the region \(9 \leq x^2 + y^2 \leq 49 \).

5. (1 pt)
Suppose the solid \(W \) in the figure consists of the points below the \(xy \)-plane that are between concentric spheres centered at the origin of radii 2 and 10. Find the limits of integration for an iterated integral of the form
\[
\iiint_W f(\rho, \phi, \theta) \, d\rho \, d\phi \, d\theta
\]
\(A = \quad B = \quad C = \quad D = \quad E = \quad F = \quad
\)

If necessary, enter \(\rho \) as rho, \(\phi \) as phi, and \(\theta \) as theta.
9. (1 pt) For each of the following vector fields \(\mathbf{F} \), decide whether it is conservative or not by computing the appropriate first order partial derivatives. Type in a potential function \(f \) (that is, \(\nabla f = \mathbf{F} \)) with \(f(0,0) = 0 \). If it is not conservative, type N.

A. \(\mathbf{F}(x, y) = (-4x - 5y) \mathbf{i} + (-5x + 10y) \mathbf{j} \)

\[f(x, y) = \] ________

B. \(\mathbf{F}(x, y) = -2y \mathbf{i} - x \mathbf{j} \)

\[f(x, y) = \] ________

C. \(\mathbf{F}(x, y) = (-2 \sin y) \mathbf{i} + (-10y - 2x \cos y) \mathbf{j} \)

\[f(x, y) = \] ________

Note: Your answers should be either expressions of \(x \) and \(y \) (e.g. "3xy + 2y"), or the letter "N"

10. (1 pt) Consider the vector field \(\mathbf{F}(x, y, z) = xi + yj + zk \).

a) Find a function \(f \) such that \(\mathbf{F} = \nabla f \) and \(f(0,0,0) = 0 \).

\[f(x, y, z) = \] ________

b) Use part a) to compute the work done by \(\mathbf{F} \) on a particle moving along the curve \(C \) given by \(\mathbf{r}(t) = (1 + 4 \sin t) \mathbf{i} + (1 + 4 \sin^2 t) \mathbf{j} + (1 + \sin^3 t) \mathbf{k} \), \(0 \leq t \leq \frac{\pi}{2} \).

11. (1 pt) Consider the vector field \(\mathbf{F}(x, y, z) = (5z + 5y) \mathbf{i} + (z + 5x) \mathbf{j} + (y + 5x) \mathbf{k} \).

a) Find a function \(f \) such that \(\mathbf{F} = \nabla f \) and \(f(0,0,0) = 0 \).

\[f(x, y, z) = \] ________

b) Suppose \(C \) is any curve from \((0,0,0)\) to \((1,1,1)\). Use part a) to compute the line integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \).

12. (1 pt)

Suppose \(\vec{F}(x, y) = (3x - 4y)\mathbf{i} + 3xy\mathbf{j} \)

and \(C \) is the counter-clockwise oriented sector of a circle centered at the origin with radius 3 and central angle \(\pi/3 \). Use Green’s theorem to calculate the circulation of \(\vec{F} \) around \(C \).

Circulation = ________________

13. (1 pt)

Use Green’s Theorem to evaluate the line integral of \(\mathbf{F} = \langle x^2, 6x \rangle \) around the boundary of the parallelogram in the following figure (note the orientation).

With \(x_0 = 2 \)

\[\int_C x^2 \, dx + 6x \, dy = \] ________________

15. (1 pt) Compute the flux of the vector field \(\vec{F} = 8x^2y^2z^2 \) through the surface \(S \) which is the cone \(\sqrt{x^2+y^2} = z \), with \(0 \leq z \leq R \), oriented downward.

(a) Parameterize the cone using cylindrical coordinates (write \(\theta \) as \(\text{theta} \)).

\[x(r, \theta) = \] ________________

\[y(r, \theta) = \] ________________

\[z(r, \theta) = \] ________________

with \(_____ \leq r \leq _____ \)

and \(_____ \leq \theta \leq _____ \)

(b) With this parameterization, what is \(d\vec{A} \)?

\[d\vec{A} = \] ________________

(c) Find the flux of \(\vec{F} \) through \(S \).

Flux = ________________

19. (1 pt) Determine whether each of the following vector fields appears to be path independent (conservative) or path dependent (not conservative).
20. (1 pt) Let $\mathbf{F} = (2xy, 4y^2)$ be a vector field in the plane, and C the path $y = 4x^2$ joining $(0,0)$ to $(1,4)$ in the plane.

A. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$

B. Does the integral in part (A) depend on the path joining $(0,0)$ to $(1,4)$? ____ (y/n)

21. (1 pt) Consider the solid that lies above the square (in the xy-plane) $R = [0, 2] \times [0, 2]$, and below the elliptic paraboloid $z = 81 - x^2 - 2y^2$. Using iterated integrals, compute the exact value of the volume.

22. (1 pt) Evaluate the iterated integral $\int_0^2 \int_0^3 12x^2y^3 \, dxdy$

23. (1 pt) Evaluate the iterated integral $\int_1^2 \int_2^3 (x+y)^{-2} \, dydx$

24. (1 pt) Calculate the double integral $\int_R x \cos(2x+y) \, dA$ where R is the region: $0 \leq x \leq \frac{\pi}{3}, 0 \leq y \leq \frac{\pi}{4}$

25. (1 pt) Evaluate the integral by reversing the order of integration.

\[
\int_0^1 \int_5^{5y} e^{-x} \, dxdy = \]

26. (1 pt) Consider the integral $\int_1^4 \int_0^{2\ln x} f(x,y) \, dydx$. Sketch the region of integration and change the order of integration.

\[
\int_a^b \int_{g_1(y)}^{g_2(y)} f(x,y) \, dxdy
\]

$g_1(y) = \quad g_2(y) = $