Lecture #19: Lagrange Multipliers.

Suppose we want the extrema value of an objective function $f(x,y)$ subject to some constraint $g(x,y) = c$.

This is the same question as finding the largest k value of k for which the level curve $f(x,y) = k$ intersects $g(x,y) = c$.

This would appear to happen when $f(x,y) = k$ is tangent to $g(x,y) = c$.

So at the point f and g share parallel normal vectors:

At (x_0, y_0) \[\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0) \]

Similarly, if we want the maximum of $f(x,y,z)$ subject to a constraint $g(x,y,z) = c$, we have the level surface for f tangent to $g(x,y,z) = c$, so at (x_0, y_0, z_0) they have parallel normal vectors:

\[\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0) \]
To give a more mathematical argument, let \(P(t) = (x(t), y(t), z(t)) \) a curve on \(g(x, y, z) = c \) passing through \(P \).

Since \(f(x, y, z) \) has an extreme at \(P \), then
\[
\frac{df}{dt} \bigg|_{t=0} = 0 = \nabla f \cdot \frac{dP}{dt}
\]
by the chain rule.

\[
\Rightarrow \nabla f \perp g(x, y, z) = c
\]
Since \(\nabla g \) is also \(\perp \) to \(g = c \) surface, we have
\[
\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0)
\]

In summary, for the two variable case we need to solve
\[
f_x = \lambda g_x, \quad f_y = \lambda g_y, \quad g(x, y) = c
\]
for \(\lambda, x, y \).

For the 3 variable case:
\[
f_x = \lambda g_x, \quad f_y = \lambda g_y, \quad f_z = \lambda g_z, \quad g(x, y, z) = c
\]
solved for \((x, y, z)\) and \(\lambda \).

Note: A constrained max or min must occur at one of \((x_0, y_0, z_0)\) or \((x, y, z)\) if there is one. But not every solution necessarily yields a max or min.
Example: Find the max and min values of
\[f(x, y) = x^2 + y^2 \text{ on } x^2 + y^2 = 4 \]
You can see what the answer is going to be...

\[1 = 2x\lambda \]
\[1 = 2y\lambda \]
\[x^2 + y^2 = 4 \]
\[2x = 4 \]
\[x = \pm \sqrt{2} \]
\[y = \pm \sqrt{2} \]
\[(\sqrt{2}, \sqrt{2}) \text{ and } (-\sqrt{2}, -\sqrt{2}) \]
\[f_{\text{max}} = 2\sqrt{2} \quad f_{\text{min}} = -2\sqrt{2} \]

Example: A rectangular box, no lid, 12 m² cardboard.
Find the max volume.
\[V = xyz \quad \text{constraint: } xy + 2zx + 2zy = 12 \]
\[x = \lambda(y + 2z) \]
\[y = \lambda(x + 2z) \]
\[z = \lambda(2x + 2y) \]
\[xy + 2zx + 2zy = 12 \]

Multiply:
\[xy^2 = \lambda(xy + 2x) \]
\[xy^2 = \lambda(xy + 2y) \]
\[xy^2 = \lambda(2xy + 2y) \]
\[2x = 2y \Rightarrow x = y \]
\[xy = 2z \Rightarrow y = 2z \]
\[xy = 2z \Rightarrow y = 2z \]

Put \(x = y = 2z \) in last eqn:
\[4z^2 + 4z + 4z^2 = 12 \]
\[2^2 = 1 \quad 2 = 1 \]
\[x = y = 2 \]
When we have a closed bounded region, we may use a combination of critical point / Lagrange.

Ex: Find the extrema of \(f = x^2 + 2y^2 \) on \(x^2 + y^2 \leq 1 \)

\[
\begin{align*}
 f_x &= 2x, & f_y &= 4y \\
 \text{(0,0)} &\text{ is a c.p.} & f(0,0) &= 0
\end{align*}
\]

Now the identity, \(x^2 + y^2 = 1 \)

\[
\nabla f = \langle 2x, 4y \rangle \\
\nabla g = \langle 2x, 2y \rangle
\]

\[
\langle 2x, 4y \rangle = \lambda \langle 2x, 2y \rangle
\]

\[
2x = 2\lambda x \\
2y = 2\lambda y
\]

\[
\begin{align*}
x &= 0 & x(1-\lambda) &= 0 & \Rightarrow & x = 0 \text{ or } \lambda = 1 \\
y &= \frac{1}{2} y & 2y(2-\lambda) &= 0
\end{align*}
\]

If \(x = 0 \) we can have \(y = \pm 1 \) \((0, \pm 1) \text{ (appropriate)} \)

At \(\lambda = 1 \), then \(y = 0 \Rightarrow x = \pm 1 \) \((\pm 1, 0) \)

\[
\begin{align*}
f(0, \pm 1) &= 2 < \text{Abz Max} \\
f(\pm 1, 0) &= 1 \\
f(0,0) &= 0 < \text{Abz Min}
\end{align*}
\]