Extra problem set 5

1. on the bounded interval \((-L, L)\) consider the differential operator

\[L := -i \frac{d}{dx}, \]

with boundary condition

\[Bu = u(L) - u(-L). \]

(a) Show that \(L \) is formally self-adjoint and that the boundary condition that is adjoint to \(Bu = 0 \) is the boundary condition \(Bv = 0 \).

(b) Find the precise domain that makes \(L \) a selfadjoint operator.

(c) Find all the solutions to the eigenvalue problem

\[Lu = \lambda u, \ B u = 0. \]

2. Consider the operator \(A := -\frac{d^2}{dx^2} + 1 \) in \(H := L^2[0, \pi] \) (i.e. \(Lu = -u'' + u \)) with domain

\[D_A = \{ u \in C^2[0, \pi] | u'(0) = u'(\pi) = 0 \} \]

(a) Find Green’s function \(g(x, y) \) for this operator.

(b) Let \(G : H \to H \) be the integral operator defined using the kernel \(g \). How do you know it is compact?

(c) Find the spectrum of \(G \) (and hence of \(A \)) and the eigenfunctions. How do you know that the eigenfunctions form an orthogonal basis?

(d) Show that the range \(R_A \) is dense in \(H \) and hence that \(G := A^{-1} : H \to D_A \) where \(A \) is the closure of \(A \).

(e) Write down (no computation necessary!) a double Fourier series representation of the kernel \(g(x, y) \).

3. Consider the operator \(A := -\frac{d^2}{dx^2} + 1 \) in \(H := L^2(-\infty, \infty) \) with domain

\[D_A = \{ u \in L^2(-\infty, \infty) | u' \text{ is absolutely continuous on bounded subintervals and } u'' \in L^2(-\infty, \infty) \}. \]

Let \(B \) be the operator in \(H \) defined by \(Bu = v \) where \(v(\omega) = \omega^2 f(\omega) \). The domain of \(B \) is

\[D_B := \{ U \in H | BU \in H \}. \]

Note that \(A = F^{-1}BF \) where \(F \) denotes the Fourier transform.

(a) Determine the spectrum of \(B \) completely (point, residual, continuous). Is \(B \) selfadjoint?

(b) Using part (a) what can you say about the operator \(A \).

(c) Show that if \(f \) and \(f'' \) are both in \(L^2(-\infty, \infty) \) then so is \(f' \).

4. Let \(A \) be a selfadjoint operator on the Hilbert space \(H \) such that \(A^{-1} : H \to H \) exists and is compact. Suppose that the eigenvalues \(\mu_i \) of \(A^{-1} \) are all positive.

(a) Use the Spectral Theorem to show that \(A \) has the form \(\sum_{i=1}^{\infty} \lambda_i P_i \) where \(P_i \) are orthogonal projection operators.

(b) Define the operator

\[e^{-At} := \sum_{i=1}^{\infty} e^{-\lambda_i t} P_i. \]

Show that for \(t > 0 \) this is well defined on \(H \), and that \(u(t) := e^{-At}u_0 \) is differentiable for all \(u_0 \in H \)

and \(t > 0 \), and that \(u'(t) = Au(t) \). Here differentiation is defined as usual, as the limit of the difference quotient.

(c) Show that if \(u_0 \in D_A \) then

\[\lim_{t \to 0} u(t) = u_0. \]

5. Show that if \(\epsilon > 0 \) then there exists a positive number \(A_\epsilon \) such that for all \(f \in H^1[0, 1] \) we have

\[\|f\|_\infty < \epsilon \|f\|_{H^1[0, 1]} + A_\epsilon \|f\|_{L^2[0, 1]}. \]

Hint: Consider

\[\int_{x_0}^{x} (f(x) - f(x_0)) f'(x) \, dx. \]