Homework Set 5

1. Consider the problems

\[y''(t) + a_1y'(t) + a_0y(t) = 0, \quad y(0) = 0, \quad y'(0) = 1, \]

and

\[u''(t) + a_1u'(t) + a_0u(t) = f(t), \quad u(0) = 0, \quad u'(0) = 0. \]

Let \(Y, U, \) and \(F \) denote the Laplace transforms of \(y, u, \) and \(f. \)

(a) Find expressions for \(Y \) and \(U \).

(b) Use a convolution theorem to derive Duhamel’s Principle for this problem.

2. Extend the data as odd functions and use the Fourier Transform to solve the problem

\[u_t = ku_{xx} + f(x,t); \quad u(x,0) = \phi(x), \quad x > 0; \quad u(0,t) = 0, \quad t > 0. \]

3. You should use the table of transforms available at the MAT462 web site: Consider the diffusion problem on \(\mathbb{R} \):

\[u_t = ku_{xx} + f(x,t), \quad u(x,0) = \phi(x). \]

Let’s use capital letters to denote the Laplace transform and \(\hat{\cdot} \) to denote Fourier transforms. So, given \(g(x,t) \), its Laplace and Fourier transforms are respectively \(G(x,s) \) and \(\hat{g}(\omega,t) \), and

\[\mathcal{F}[G(x,s)] = \hat{G}(\omega,s) = \mathcal{L}[\hat{g}(\omega,t)]. \]

(a) Laplace transform and Fourier transform the PDE to obtain an expression for \(\hat{U}(\omega,s) \).

(b) Use the table and the inverse Fourier transform to obtain \(U(x,s) \) from your answer in part (a).

(c) Use the table and the inverse Laplace transform to obtain \(\hat{u}(\omega,t) \) from your answer in part (a).

(d) Finally, take the inverse transforms of \(U(x,s) \) and of \(\hat{u}(\omega,t) \) and show that both give the same expression for \(u(x,t) \).