Lecture 7, Tu., Sept. 12. Hw 2 is due on Th., Sept. 28

Reading homework: Chapter 2

Derivation of Euler’s equation

We consider the more general scenario that all the vital rates are functions of continuous time. Specifically, let

\(B(t) = \text{total birth rate}, \)

\(l(x) = l_x = \text{fraction of newborn to survive to age } x, \)

\(m(x) = m_x = \text{average birth rate for an individual of age } x. \)

Then

\[
B(t) = \int_0^\infty \text{birth due to parents of age } x \, dx = \int_0^\infty B(t-x)l(x)m(x) \, dx.
\]

Assume that the population is at a stable age distribution and the intrinsic growth rate is \(r \) (the dominating eigenvalue). Then

\[
e^{rt}B(0) = \int_0^\infty e^{r(t-x)}B(0)l(x)m(x) \, dx.
\]

Which gives us the Euler’s equation

\[
1 = \int_0^\infty e^{-rx}l(x)m(x) \, dx.
\]

In discrete time, the Euler’s equation takes the form of

\[
1 = \sum_{x=0}^{\infty} e^{-rx}l_x m_x.
\]

In continuous time, the net reproduction rate is

\[
R_0 = \int_0^\infty l(x)m(x) \, dx.
\]

The stable age distribution is

\[
c(x) = \frac{\text{number of individuals of age } x}{\text{total number of individuals}} = \frac{B(t-x)}{\int_0^\infty B(t-x)l(x) \, dx}.
\]

Chapter 2: Nonlinear Difference Equations

1. Stability of first order nonlinear difference equations. We consider first the scalar equation

\[
x_{n+1} = f(x_n), \quad f(x) \in C^1.
\] (1.1)

We say \(\overline{x} \) is a steady state solution (equilibrium) of (1.1) if \(\overline{x} = f(\overline{x}). \)

Definition 1. The steady state solution \(\overline{x} \) is stable if for any positive constant \(\varepsilon, \)

there is a \(\delta \) such that \(|x_0 - \overline{x}| < \delta \) implies that for all \(n > 0, \) \(|x_n - \overline{x}| < \varepsilon. \) If in addition,
\[\lim_{n \to \infty} x_n = \bar{x}, \text{ then we say that the steady state solution } \bar{x} \text{ is asymptotically stable.} \]

Notice that in the textbook, stable is actually referred as asymptotically stable. The following simple theorem is very useful. We provide its rigorous proof.

Theorem 1. The steady state solution \(\bar{x} \) of (1.1) is asymptotically stable if \(|df(\bar{x})/dx| < 1 \).

Proof. Since \(f(x) \in C^1 \) and \(|df(\bar{x})/dx| < 1 \), there is a \(\varepsilon_1 > 0 \) such that \(|x_0 - \bar{x}| \leq \varepsilon_1 \) ensures that \(|df(x_0)/dx| < 1 \). Then

\[\lambda \equiv \max\{|df(x_0)/dx| : |x_0 - \bar{x}| \leq \varepsilon_1\} < 1. \]

Given \(\varepsilon > 0 \), let \(\delta = \min\{\varepsilon/2, \varepsilon_1/2\} \).

Recall that by the mean value theorem, we have

\[f(x_0) = f(\bar{x}) + f'(\xi)(x_0 - \bar{x}) \]

for some \(\xi \) in between \(x_0 \) and \(\bar{x} \). Since \(\bar{x} = f(\bar{x}) \), we have

\[|x_1 - \bar{x}| = |f(x_0) - \bar{x}| = |f'(\xi)(x_0 - \bar{x})| \leq \lambda|x_0 - \bar{x}| < \delta. \]

Continue this way, we obtain that

\[|x_n - \bar{x}| \leq \lambda^n|x_0 - \bar{x}| < \delta. \]

Clearly, \(\lim_{n \to \infty} x_n = \bar{x} \).

A simple application of this theorem to the discrete logistic equation (see example 2 on page 44) \(x_{n+1} = rx_n(1 - x_n) \) yields that \(\bar{x} = 1 - 1/r \) exists and is asymptotically stable if \(1 < r < 3 \).

2. **Stability of second order nonlinear difference equations.** Read sections 2.7 and 2.8. Make sure that you understand and familiar with the following result.

Theorem 2. The roots of \(\lambda^2 - \beta \lambda + \gamma = 0 \) satisfy \(|\lambda| < 1 \) if \(|\beta| < 1 + \gamma < 2 \).

3. **Stability of higher order nonlinear difference equations.** Read section 2.9. Make sure that you are familiar with Jury test in the special case of third order difference equations.

Theorem 3. The roots of \(P(\lambda) \equiv \lambda^3 + a_1\lambda^2 + a_2\lambda + a_3 = 0 \) satisfy \(|\lambda| < 1 \) if and only if that

1) \(P(1) > 0 \),
2) \(P(-1) < 0 \),
3) \(|a_3| < 1, |b_3| > |b_1|, |c_3| > |c_2| \),

where \(b_3 = 1 - a_3t^2, b_2 = a_1 - a_3a_2, b_1 = a_2 - a_3a_1, c_3 = b_3 - b_1^2, c_2 = b_3b_2 - b_1b_3 \).

The Jury test is a practical presentation of the so-called Schur-Cohn criterion which can be derived easily from the much more well-known Routh-Hurwitz criterion (see page 233).