Lectures 14, Th., Oct. 5

Reading homework: chapter 4

1. A chemostat model. We covered sections 4.6-4.7. In addition, we have shown that the solutions of the model (19a)-(19b) with positive initial values are positive and bounded. Standard existence and uniqueness theorems of MAT 475 (or MAT 574) ensure that such solution exist and unique for \(t > 0 \).

Theorem 1. (Positivity) The solutions of the model (19a)-(19b) with positive initial values are positive for \(t > 0 \).

Proof. If not, then there is a \(t_1 > 0 \), such that \(N(t_1)C(t_1) = 0 \) and \(N(t)C(t) > 0 \) for \(t \in [0, t_1) \). Assume first that \(C(t_1) = 0 \). Then \(C'(t_1) \leq 0 \). However, (19b) implies that \(C'(t_1) = \alpha_2 > 0 \), a contradiction. In the rest of this proof, we show that it is impossible that \(N(t_1) = 0 \). From (19a) and the fact that it is impossible that \(C(t_1) = 0 \), we see that for \(t \in [0, t_1) \), we have that

\[
N'(t) \geq -N(t)
\]

which yields that for \(t \in [0, t_1) \),

\[
N(t) \geq N(0)e^{-t} > N(0)e^{-t_1}.
\]

Since \(N(t) \) is continuous on \([0, t_1]\), we see that \(N(t_1) \geq N(0)e^{-t_1} > 0 \). This is a contradiction.

Theorem 2. (Boundedness) The solutions of the model (19a)-(19b) with positive initial values are bounded for \(t > 0 \).

Proof. Let \(Z(t) = N(t) + \alpha_1C(t) \). Then

\[
Z'(t) = \alpha_1\alpha_2 - Z(t).
\]

Hence \(Z(t) = \alpha_1\alpha_2 + (Z(0) - \alpha_1\alpha_2)e^{-t} \leq \max\{\alpha_1\alpha_2, Z(0)\} \). This shows that both \(N(t) \) and \(C(t) \) are bounded for \(t > 0 \).