Contents

Preface ix

1 Introduction to Theory in Medicine 1
 1.1 Introduction ... 1
 1.2 Disease ... 3
 1.3 A brief survey of trends in health and disease 4
 1.4 The scientific basis of medicine 10
 1.5 Aspects of the medical art 11
 1.6 Key scientific concepts in mathematical medicine 12
 1.6.1 Genetics .. 13
 1.6.2 Evolution .. 17
 1.7 Pathology—where science and art meet 21
References .. 22

2 Introduction to Cancer Modeling 25
 2.1 Introduction to cancer dynamics 25
 2.2 Historical roots ... 26
 2.2.1 The von Bertalanffy growth model 26
 2.2.2 Gompertzian growth 28
 2.3 Applications of Gompertz and von Bertalanffy models 33
 2.4 A more general approach 39
 2.5 Mechanistic insights from simple tumor models 42
 2.6 Sequencing of chemotherapeutic and surgical treatments ... 44
 2.7 Stability of steady states for ODEs 48
 2.8 Exercises .. 52
 2.9 Projects and open questions 58
 2.9.1 Mathematical open questions 60
 2.9.2 Tumor growth with a time delay 61
 2.9.3 Tumor growth with cell diffusion 61
References .. 61

3 Spatially Structured Tumor Growth 65
 3.1 Introduction .. 65
 3.2 The simplest spatially structured tumor model 66
 3.2.1 Model formulation 66
 3.2.2 Equilibrium nutrient profile with no necrosis 69
 3.2.3 Size of the necrotic core 71
3.3 Spheroid dynamics and equilibrium size 72
3.4 Greenspan’s seminal model ... 77
 3.4.1 The Greenspan model ... 78
 3.4.2 Threshold for quiescence 80
 3.4.3 Growth dynamics of the Greenspan model 81
3.5 Testing Greenspan’s model .. 83
3.6 Sherratt-Chaplain model for avascular tumor growth 84
 3.6.1 MATLAB® file for Figure 3.6 86
 3.6.2 Minimum wave speed ... 88
3.7 A model of in vitro glioblastoma growth 89
 3.7.1 Model formulation ... 89
 3.7.2 Traveling wave system properties 91
 3.7.3 Existence of traveling wave solutions 92
3.8 Derivation of one-dimensional conservation equation 96
3.9 Exercises .. 98
3.10 Projects .. 102
 3.10.1 Nutrient limitation induced quiescence 103
 3.10.2 Inhibitor generated by living cells 103
 3.10.3 Glioblastoma growth in a Petri dish or in vivo 103
 3.10.4 A simple model of tumor-host interface 103
References ... 105

4 Physiologically Structured Tumor Growth 107
 4.1 Introduction ... 107
 4.2 Construction of the cell-size structured model 108
 4.3 No quiescence, some intuition 112
 4.4 Basic behavior of the model 114
 4.5 Exercises .. 119
References ... 120

5 Prostate Cancer: PSA, AR, and ADT Dynamics 123
 5.1 Introduction ... 123
 5.2 Models of PSA kinetics ... 124
 5.2.1 Vollmer et al. model ... 125
 5.2.2 Prostate cancer volume 125
 5.3 Dynamical models .. 127
 5.3.1 Swanson et al. model ... 127
 5.3.2 Vollmer and Humphrey model 130
 5.3.3 PSA kinetic parameters: Conclusions from dynamical models ... 133
 5.4 Androgens and the evolution of prostate cancer 136
 5.4.1 Evolutionary role .. 137
 5.4.2 Intracellular AR kinetics model 138
 5.4.3 Basic dynamics of the AR kinetics model 140
 5.5 Prostate growth mediated by androgens 141
5.6 Evolution and selection for elevated AR expression 146
 5.6.1 Model 146
 5.6.2 Results 147
5.7 Jackson ADT model 148
5.8 The Ideta et al. ADT model 152
5.9 Predictions and limitations of current ADT models 155
5.10 An immunotherapy model for advanced prostate cancer 156
5.11 Other prostate models 161
5.12 Exercises 163
5.13 Projects 167
 5.13.1 The epithelial-vascular interface and serum PSA 167
 5.13.2 A clinical algorithm based on a dynamical model 168
 5.13.3 An extension of Vollmer and Humphrey’s model 168
 5.13.4 Androgens positively regulating AI cell proliferation 169
 5.13.5 Combining androgen ablation with other therapies 169
References 170

6 Resource Competition and Cell Quota in Cancer Models 175
6.1 Introduction 175
6.2 A cell-quota based population growth model 176
6.3 From Droop cell-quota model to logistic equation 180
6.4 Cell-quota models for prostate cancer hormone treatment 183
 6.4.1 Preliminary model 183
 6.4.2 Final model 184
 6.4.3 Simulation 185
 6.4.4 Predictions 187
6.5 Other cell-quota models for prostate cancer hormone treatment 188
 6.5.1 Basic model 188
 6.5.2 Long-term competition in the basic model 189
 6.5.3 Intermittent androgen deprivation 190
 6.5.4 Cell quota with chemical kinetics 192
6.6 Stoichiometry and competition in cancer 193
 6.6.1 KNE model 194
 6.6.2 Predictions 196
6.7 Mathematical analysis of a simplified KNE model 198
6.8 Exercises 202
6.9 Projects 207
 6.9.1 Beyond the KNE model 207
 6.9.2 Iodine and thyroid cancer 208
 6.9.3 Iron and microbes 208
References 210
7 Natural History of Clinical Cancer

7.1 Introduction .. 213
7.2 Conceptual models for the natural history of breast cancer:
 Halsted vs. Fisher ... 214
 7.2.1 Surgery and the Halsted model 215
 7.2.2 Systemic chemotherapy and the Fisher model 217
 7.2.3 Integration of Halsted and Fisher concepts: Surgery
 with adjuvant chemotherapy 218
7.3 A simple model for breast cancer growth kinetics 219
 7.3.1 Speer model: Irregular Gompertzian growth 220
 7.3.2 Calibration and predictions of the Speer model 221
 7.3.3 Limitations of the Speer approach 222
7.4 Metastatic spread and distant recurrence 223
 7.4.1 The Yorke et al. model 223
 7.4.2 Parametrization and predictions of the Yorke model .. 226
 7.4.3 Limitations of the Yorke approach 227
 7.4.4 Iwata model .. 227
 7.4.5 Thames model ... 231
 7.4.6 Other models ... 231
7.5 Tumor dormancy hypothesis 231
7.6 The hormonal environment and cancer progression 235
7.7 The natural history of breast cancer and screening protocols 236
 7.7.1 Pre-clinical breast cancer and DCIS 238
 7.7.2 CISNET program ... 238
 7.7.3 Continuous growth models 240
 7.7.4 Conclusions and optimal screening strategies 245
7.8 Cancer progression and incidence curves 246
 7.8.1 Basic multi-hit model 246
 7.8.2 Two-hit models ... 248
 7.8.3 The case of colorectal cancer 251
 7.8.4 Multiple clonal expansions 254
 7.8.5 Smoking and lung cancer incidence 254
 7.8.6 Summary ... 255
7.9 Exercises ... 256
References ... 258

8 Evolutionary Ecology of Cancer

8.1 Introduction .. 265
8.2 Necrosis: What causes the tumor ecosystem to collapse? 266
 8.2.1 Necrosis in multicell spheroids 268
 8.2.2 Necrosis in tumor cords 270
 8.2.3 Diffusion limitation in ductal carcinoma in situ 272
 8.2.4 Necrosis caused by mechanical disruption of cells 273
 8.2.5 Necrosis from local acidosis 276
 8.2.6 Necrosis due to local ischemia 277
8.3 What causes cell diversity within malignant neoplasia? 280
8.3.1 Causes of Type I diversity 280
8.3.2 Causes of Type II diversity 286
8.4 Synthesis: Competition, natural selection and necrosis 295
8.5 Necrosis and the evolutionary dynamics of metastatic disease 297
8.5.1 Pre-metastatic selection hypothesis 298
8.5.2 Reproductive fitness and export probability 300
8.5.3 Tumor self-seeding 301
8.6 Conclusion 302
8.7 Exercises 303
References 304

9 Models of Chemotherapy 313
9.1 Dose-response curves in chemotherapy 314
9.1.1 Simple models 314
9.1.2 Concentration, time, and cytotoxicity plateaus 317
9.1.3 Shoulder region 317
9.1.4 Pharmacodynamics for antimicrobials 318
9.2 Models for in vitro drug uptake and cytotoxicity 318
9.2.1 Models for cisplatin uptake and intracellular pharmacokinetics 319
9.2.2 Paclitaxel uptake and intracellular pharmacokinetics 320
9.3 Pharmacokinetics 323
9.4 The Norton-Simon hypothesis and the Gompertz model 327
9.4.1 Gompertziian model for human breast cancer growth 328
9.4.2 The Norton-Simon hypothesis and dose-density 328
9.4.3 Formal Norton-Simon model 329
9.4.4 Intensification and maintenance regimes 331
9.4.5 Clinical implications and results 331
9.4.6 Depletion of the growth fraction 332
9.5 Modeling the development of drug resistance 333
9.5.1 Luria-Delbrück fluctuation analysis 333
9.5.2 The Goldie-Coldman model 338
9.5.3 Extensions of Goldie-Coldman and alternating therapy 340
9.5.4 The Monro-Gaffney model and palliative therapy 347
9.5.5 The role of host physiology 350
9.6 Heterogeneous populations: The cell cycle 351
9.6.1 The Smith-Martin conceptual model 351
9.6.2 A delay differential model of the cell cycle 353
9.6.3 Age-structured models for the cell cycle 355
9.6.4 More general sensitivity and resistance 358
9.7 Drug transport and the spatial tumor environment 359
9.7.1 Solute transport across tumor capillaries 359
9.7.2 Fluid flow in tumors 361
9.7.3 Tumor spheroid 362
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7.4 Tumor cord framework</td>
<td>362</td>
</tr>
<tr>
<td>9.8 Exercises</td>
<td>363</td>
</tr>
<tr>
<td>References</td>
<td>364</td>
</tr>
</tbody>
</table>

10 Major Anticancer Chemotherapies 371

10.1 Introduction	371
10.2 Alkylating and alkalating-like agents	372
10.2.1 Nitrogen mustards	373
10.2.2 Platinum-based drugs	375
10.2.3 Nitrosoureas	376
10.2.4 Methylating agents	377
10.3 Antitumor antibiotics	377
10.3.1 Anthracyclines	378
10.3.2 Mitomycin-C	378
10.3.3 Bleomycins	378
10.4 Antimetabolites	380
10.5 Mitotic inhibitors	380
10.5.1 Taxanes	380
10.5.2 Vinca alkaloids	382
10.6 Non-cytotoxic and targeted therapies	383
References	383

11 Radiation Therapy 389

11.1 Introduction	389
11.2 Molecular mechanisms	393
11.2.1 Ions and radical reactions	394
11.2.2 Oxygen status	397
11.2.3 The four R's	398
11.3 Classical target-hit theory	398
11.4 Lethal DNA misrepair	400
11.4.1 Repair-misrepair model	400
11.4.2 Lethal-potentially lethal model	406
11.4.3 Parametrization	407
11.5 Saturable and enzymatic repair	408
11.5.1 Haynes model	409
11.5.2 Goodhead model	410
11.5.3 General saturable-repair model	411
11.6 Kinetics of damage repair	411
11.7 The LQ model and dose fractionation	414
11.8 Applications	419
11.8.1 Tumor cure probability	420
11.8.2 Regrowth	420
11.8.3 Hypoxia	423
11.8.4 Radiation with chemotherapy	423
References	425
12 Chemical Kinetics 429
 12.1 Introduction and the law of mass action 429
 12.1.1 Dissociation constant 432
 12.2 Enzyme kinetics 432
 12.2.1 Equilibrium approximation 433
 12.3 Quasi-steady-state approximation 434
 12.3.1 Turnover number 435
 12.3.2 Specificity constant 435
 12.3.3 Lineweaver-Burk equation 435
 12.4 Enzyme inhibition 437
 12.4.1 Competitive inhibition 437
 12.4.2 Allosteric inhibition 438
 12.5 Hemoglobin and the Hill equation 440
 12.6 Monod-Wyman-Changeux model 442
 References 444

13 Epilogue: Toward a Quantitative Theory of Oncology 447
 References 452

Index 454