The subject of this talk is an operator theoretic approach to function theory that is well suited to the generalization of classical results of complex analysis in one variable.

As a primary example, we will discuss results pertaining to the Schur class. The Schur class in two variables is the family of holomorphic functions that map the complex bidisk into the complex unit disk. Every function in the Schur class has an associated operator theoretic construct called a Hilbert space model, a pair consisting of a Hilbert space and a vector-valued function, that encodes information about the behavior of the function in the geometry of the Hilbert space. Hilbert space models have a wide range of applications in the study of complex analysis in several variables. I will discuss the generalization to several variables of some results in classical complex analysis about the behavior of one variable Schur functions at the boundary of the disk.