Isometries of asymptotically conical shrinking Ricci solitons.  Preprint (2018), 12 pp.   (With Lu Wang.) 
    A uniqueness theorem for asymptotically cylindrical shrinking Ricci solitons.  Preprint (2017), 64 pp.   (With Lu Wang.) 
    Kählerity of shrinking gradient Ricci solitons asymptotic to Kähler cones.  J. Geom. Anal. 28 (2018), no. 3, 2609--2623. 
    A local curvature estimate for the Ricci flow.  J. Funct. Anal. 271 (2016) no. 9, 2604--2630.   (With Ovidiu Munteanu and Jiaping Wang.)
    Short-time persistence of bounded curvature under the Ricci flow.  Math. Res. Lett. 24 (2017), no. 2, pp. 427--447.
    An energy approach to uniqueness for higher-order geometric flows.  J. Geom. Anal. 26 (2016), no. 4, 3344--3368.
    A short proof of backward uniqueness for some geometric evolution equations.  Int. J. Math. 27 (2016), no. 12, 1650102, 17 pp.
    Rigidity of asymptotically conical shrinking gradient Ricci solitons.  J. Diff. Geom. 100 (2015), no. 1, 55--108.   (With Lu Wang.) 
    Time-analyticity of solutions to the Ricci flow.   Amer. J. Math. 137 (2015), no. 2, 535--576.
    An energy approach to the problem of uniqueness for the Ricci flow.   Comm. Anal. Geom. 22 (2014), no. 1, 149--176.
    A local version of Bando's theorem on the real-analyticity of solutions to the Ricci flow.  Bull. London Math. Soc. 45 (2013), no. 1, 153--158.
    Ricci flow and the holonomy group.   J. Reine Angew. Math. 690 (2014), 131--161. (doi:10.1515/crelle-2012-0023)
    Backwards uniqueness of the Ricci flow.   Int. Math. Res. Not. (2010), no. 21. 4064--4097.
    Gradient estimates for p-harmonic functions, 1/H flow, and an entropy formula.  Ann. Sci. Ec. Norm. Super. 4 (2009) no. 1, 1--36. (With Lei Ni.)
    On rotationally invariant shrinking gradient solitons.   Pacific J. Math. 236 (2008) no. 1, 73--88.
    Hamilton's gradient estimate for the heat kernel on complete manifolds.   Proc. Amer. Math. Soc. 135 (2007), no. 9, 3013--3019.

     contributions to conference proceedings:

    Identifying shrinking solitons by their asymptotic geometries.  Preprint (2018), 9 pp.  

     unpublished notes:

    Harnack inequalities for evolving convex surfaces from the space-time perspective.   (2009), 21 pp.
    A note on the uniqueness of complete, positively-curved expanding Ricci solitons in 2-D.   (2006), 4 pp.