THOUGHTS ABOUT THE \tilde{M}-FUNCTOR, CROSSED PRODUCTS AND PARACOMPACT C^*-ALGEBRAS

MAGNUS B. LANDSTAD
NTNU, NORWAY

ABSTRACT

Many C^*-algebras I have met are of the form $A = BC$ where B and C are C^*-subalgebras of the multiplier algebra $M(A)$.

Example 0.1. A crossed product $A = B \rtimes_\alpha G$ with $C = C^*(G)$.

Example 0.2. $A = B \otimes C$ for two C^*-algebras B, C and some C^*-tensor product.

In both examples the following C^*-algebra is of interest:

$$\tilde{M}(A) = \{ x \in M(A); xC + Cx \subseteq A \}.$$

One goal is to find out when \tilde{M} is an exact functor on C^*-algebras. As a first step I will try to characterize $\tilde{M}(A)$ in both examples. There will be few proofs, but many conjectures.

In the first example $\tilde{M}(A)$ looks like a crossed product. In the second example there are results for $C = C_b(X)$ with X paracompact. I therefore suggest that there should be a definition of paracompact C^*-algebras. This definition should include $C = C^*(G)$.