Poincaré–Bendixson Theorem

Suppose \(D \subseteq \mathbb{R}^2 \) open, \(f : D \to \mathbb{R}^2 \) loc. Lipschitz.

If \(\Omega \subseteq D \) is a nonempty, closed, bounded positive limit set of \(y' = f(y) \) that contains no equilibrium point then \(\Omega \) is a periodic orbit.

[e.g. Hirsch–Smale–Devaney p. 225, or Khalil p. 290]

Suppose \(S \subseteq D \) is closed and bounded and contains no equilibrium point of \(y' = f(y) \). If \(p \in S \) is such that \(\forall t \geq 0, \varphi(t, p) \in S \), then either \(\{ \varphi(t, p) : t \geq 0 \} \) is a limit cycle or \(\varphi(\cdot, p) \) converges to a limit cycle.

[e.g. wikipedia, Wattman p. 144]
Hence, for all \(x \) in the ball \(B_\delta(y_0) \), the trajectory starting at \(x \) crosses \(L \) at \(\tau(x) \in (-\epsilon, \epsilon) \). If the trajectory \(\phi(t, x) \) is bounded, then

\[
||\phi(\tau(x), x) - y_0|| = ||\phi(\tau(x), x) - x + x - y_0|| \\
\leq ||\phi(\tau(x), x) - \phi(0, x)|| + ||x - y_0|| \\
\leq k|\tau(x)| + \delta < k\epsilon + \delta
\]

where \(k \) is a bound on \(f(\phi(t, x)) \). Since, without loss of generality, we can always choose \(\delta < \epsilon \), the right-hand side of the last inequality can be made arbitrarily small by choosing \(\epsilon \) small enough. \(\Box \)

Lemma A.5 If a trajectory \(\gamma \), followed as \(t \) increases, crosses a transversal at three consecutive points \(y_1, y_2, \) and \(y_3 \), then \(y_2 \) lies between \(y_1 \) and \(y_3 \) on \(L \). \(\triangle \)

Proof: Consider the two consecutive points \(y_1 \) and \(y_2 \). Let \(C \) be a simple closed (Jordan) curve made up of the part of the trajectory between \(y_1 \) and \(y_2 \) (the arc \(MNP \) in Figure A.1) and the part of the transversal \(L \) between the same points (the segment \(PQM \) in Figure A.1). Let \(D \) be the closed bounded region enclosed by \(C \). We assume that the trajectory of \(y_2 \) enters \(D \); if it leaves, the argument is similar. By uniqueness of solutions, no trajectory can cross the arc \(MNP \). Since \(L \) is a transversal, trajectories can cross \(L \) in only one direction. Hence, trajectories will enter \(D \) along the segment \(PQM \) of \(L \). This means the set \(D \) is positively invariant. The trajectory of \(y_2 \) must remain in the interior of \(D \) which, for the case sketched in Figure A.1, implies that any further intersections with \(L \) must take place at a point below \(y_2 \). \(\Box \)

The next lemma is concerned with the intersection of limit sets and transversals.

Lemma A.6 Let \(y \) be a positive limit point of a bounded positive semi-orbit \(\gamma^+ \). Then, the trajectory of \(y \) cannot cross a transversal at more than one point. \(\triangle \)
A.10 Proof of Theorem 7.1

We prove the Poincaré-Bendixson theorem only for positive limit sets. The proof for negative limit sets is similar. We start by introducing transversals with respect to a vector field \(f \). Consider the second-order equation

\[
\dot{x} = f(x)
\]
(A.20)

where \(f : D \to \mathbb{R}^2 \) is locally Lipschitz over a domain \(D \subset \mathbb{R}^2 \). A transversal with respect to \(f \) is a closed line segment \(L \in D \) such that no equilibrium points of (A.20) lie on \(L \) and at every point \(x \in L \), the vector field \(f(x) \) is not parallel to the direction of \(L \). If \(L \) is a segment of a line whose equation is

\[
g(x) = a^T x - c = 0
\]

then \(L \) is a transversal of \(f \) if

\[
a^T f(x) \neq 0, \quad \forall x \in L
\]

If a trajectory of (A.20) meets a transversal \(L \), it must cross \(L \). Moreover, all such crossings of \(L \) are in the same direction. In the next two lemmas, we state the properties of the transversals which will be used in the proof.

Lemma A.4 If \(y_0 \) is an interior point of a transversal \(L \), then for any \(\varepsilon > 0 \) there is \(\delta > 0 \) such that any trajectory passing through the ball \(B_\delta(y_0) = \{ x \in \mathbb{R}^2 \mid \| x - y_0 \| < \delta \} \) at \(t = 0 \) must cross \(L \) at some time \(t \in (-\varepsilon, \varepsilon) \). Moreover, if the trajectory is bounded, then by choosing \(\varepsilon \) small enough the point where the trajectory crosses \(L \) can be made arbitrarily close to \(y_0 \).

\[\Delta\]

Proof: Let \(\phi(t, x) \) denote the solution of (A.20) that starts at \(\phi(0, x) = x \), and define

\[
G(t, x) = g(\phi(t, x)) = a^T \phi(t, x) - c
\]

The trajectory of \(\phi(t, x) \) crosses \(L \) if \(G(t_1, x) = 0 \) for some time \(t_1 \). For the function \(G(t, x) \) we have \(G(0, y_0) = 0 \) since \(y_0 \in L \), and

\[
\frac{\delta G}{\delta t}(0, y_0) = a^T f(\phi(t, y_0)) \bigg|_{t=0} = a^T f(y_0) \neq 0
\]

since \(L \) is a transversal. By the implicit function theorem, there is a continuously differentiable function \(\tau(x) : U \to \mathbb{R} \) defined on a neighborhood \(U \) of \(y_0 \) such that \(\tau(y_0) = 0 \) and \(G(\tau(x), x) = 0 \). By continuity of the map \(\tau(x) \), given any \(\varepsilon > 0 \) there is \(\delta > 0 \) such that

\[
\| x - y_0 \| < \delta \Rightarrow | \tau(x) | < \varepsilon
\]
Proof: Suppose that y_1 and y_2 are two distinct points on the trajectory of y and L is a transversal containing y_1 and y_2. Suppose $y \in \gamma^+(x_0)$ and let $x(t)$ denote the solution starting at x_0. Then, $y_k \in L^+(x_0)$ for $k = 1, 2$ because Lemma 3.1 proves the positive limit set L^+ is invariant. Let $J_k \subset L$ be an interval that contains y_k in its interior. Assume that J_1 and J_2 are disjoint (Figure A.2). By Lemma A.4, given any $\epsilon > 0$ there is $\delta > 0$ such that any trajectory that comes within a distance δ from y_1 will cross L. Since y_1 is a positive limit point of $x(t)$, there is a sequence t_n with $t_n \to \infty$ as $n \to \infty$ such that $x(t_n) \to y_1$ as $n \to \infty$. The solution $x(t)$ enters the ball $B_{\delta}(y_1)$ infinitely often; hence, it crosses L infinitely often. Let the sequence of crossing points be x_n, ordered as t increases. Since the trajectory is bounded, we can choose ϵ small enough to ensure that x_n is arbitrarily close to y_1. In particular, given any $\delta > 0$, there is $N > 0$ such that for all $n \geq N$, $\|x_n - y_1\| < \delta$. This shows that $x_n \to y_1$ as $n \to \infty$ and, for sufficiently large n, the sequence of crossing points x_n will lie within the interval J_1. By the same argument, the solution crosses J_2 infinitely often. Thus, there is a sequence of crossing points $a_1, b_1, a_2, b_2, \ldots$, taken as t increases, with $a_i \in J_1$ and $b_i \in J_2$. By Lemma A.5, the crossing points must be ordered on L in the same order $a_1, b_1, a_2, b_2, \ldots$. However, this is impossible since J_1 and J_2 are disjoint. Therefore, the two crossing points y_1 and y_2 must be the same point. □

The last lemma states a property of bounded positive limit sets.

Lemma A.7 Let L^+ be the positive limit set of a bounded trajectory. If L^+ contains a periodic orbit γ, then $L^+ = \gamma$. △

Proof: Let $L^+ = L^+(x)$ for some point x. It is enough to show that

$$\lim_{t \to \infty} \text{dist}(\phi(t, x), \gamma) = 0$$

where $\text{dist}(\phi(t, x), \gamma)$ is the distance from the trajectory of x to γ. Let L be a transversal at $z \in \gamma$, so small that $L \cap \gamma = z$. By repeating the argument in the
proof of the previous lemma, we know that there is a sequence \(t_n \) with \(t_n \to \infty \) as \(n \to \infty \) such that

\[
x_n = \phi(t_n, x) \in L
\]

\[
x_n \to z \quad \text{as} \quad n \to \infty
\]

\[
\phi(t, x) \notin L \quad \text{for} \quad t_{n-1} < t < t_n, \quad n = 1, 2, \ldots
\]

By Lemma A.5, \(x_n \to z \) monotonically in \(L \). Since \(\gamma \) is a periodic orbit, \(\phi(\lambda, z) = z \) for some \(\lambda > 0 \). For \(n \) sufficiently large, \(\phi(\lambda, x_n) \) will be within the ball \(B_\delta(z) \) (as defined in Lemma A.4); hence, \(\phi(t + \lambda, x_n) \in L \) for some \(t \in (-\epsilon, \epsilon) \). Thus,

\[
|t_{n+1} - t_n| < \lambda + \epsilon
\]

which gives an upper bound for the set of positive numbers \(t_{n+1} - t_n \). By continuous dependence of the solution on initial states, given any \(\beta > 0 \) there is \(\delta > 0 \) such that if \(||x_n - z|| < \delta \) and \(|t| < \lambda + \epsilon \), then

\[
||\phi(t, x_n) - \phi(t, z)|| < \beta
\]

Choose \(n_0 \) large enough that \(||x_n - z|| < \delta \) for all \(n \geq n_0 \). Then, the last inequality holds for \(n \geq n_0 \). Now, for all \(n \geq n_0 \) and \(t \in [t_n, t_{n+1}] \) we have

\[
\text{dist}(\phi(t, x), \gamma) \leq ||\phi(t, x) - \phi(t - t_n, z)|| = ||\phi(t - t_n, x_n) - \phi(t - t_n, z)|| < \beta
\]

since \(|t - t_n| < \lambda + \epsilon \). \(\Box \)

We are now ready to complete the proof of the Poincaré-Bendixson theorem. Since \(\gamma^+ \) is a bounded positive semiorbit, by Lemma 3.1, its positive limit set \(L^+ \) is a nonempty, compact, invariant set. Let \(y \in L^+ \) and \(z \in L^+(y) \subset L^+ \). Define a transversal \(L \) at \(z \); notice that \(z \) is not an equilibrium point because \(L^+ \) is free of equilibrium points. By Lemma A.6, the trajectory of \(y \) cannot cross \(L \) at more than one point. On the other hand, there is a sequence \(t_n \) with \(t_n \to \infty \) as \(n \to \infty \) such that \(\phi(t_n, y) \to z \). Hence, the trajectory of \(y \) crosses \(L \) infinitely often. Since there can be only one crossing point, the sequence of crossing points must be a constant sequence. Therefore, we can find \(r, s \in R \) such that \(r > s \) and \(\phi(r, y) = \phi(s, y) \). Since \(L^+ \) contains no equilibrium points, the trajectory of \(y \) is a periodic orbit. It follows from Lemma A.7 that \(L^+ \) is a periodic orbit, since it contains a periodic orbit.