Gronwall inequality

Suppose \(x, C, K \geq 0 \) and \(f : [0, x] \rightarrow [0, \infty) \) is continuous and satisfies for all \(t \in [0, x] \)

\[
f(t) \leq C + \int_{0}^{t} K \cdot f(s) \, ds.
\]

Then for all \(t \in [0, x] \)

\[
f(t) \leq C \cdot e^{Kt}.
\]

\(\blacksquare \): First consider \(C > 0 \).

Define \(F : [0, x] \rightarrow [0, \infty) \) by

\[
F(t) = C + \int_{0}^{t} K \cdot f(s) \, ds.
\]

Note: \(F(0) = C \) and \(F \geq f \).

Differentiate to obtain

\[
F' = K \cdot f \leq K \cdot F.
\]

and hence for all \(t \)

\[
0 \geq (F(t') - KF(t)) e^{-Kt} = \frac{d}{dt} (F(t) e^{-Kt})
\]

\(\therefore t \rightarrow F(t) e^{-Kt} \) is decreasing, and

\(\forall t \), \(f(t) \leq F(t) \leq F(0) e^{Kt} = C e^{Kt} \).