1. Suppose R, R' are commutative rings, $N \triangleleft R$ is an ideal, and $\Phi : R \rightarrow R'$ is a ring-homomorphism.
 a. Show that $\Phi(N)$ is an ideal of $\Phi(R)$.
 b. Give a counterexample to show that $\Phi(N)$ need not be an ideal of R'.

2. a. Show that there is no simple group of order 12.
 b. Suppose that p and q are primes with $q < p$. Show that there is no simple group of order p^2q.
 (For bonus credit only assume that p and q are distinct odd primes.)

3. Suppose X is a set and Y is a group, a ring, integral domain, or a field. What can you say about the space of functions $Y^X = \{f : X \rightarrow Y\}$ with operations defined pointwise $(f * g)(x) \equiv f(x) * g(x)$ in each case? Briefly explain which properties are inherited, and give counterexamples to demonstrate that other properties are not automatically inherited.

4. a. Write $f(x) = x^9 - x \in \mathbb{Z}_3[x]$ as a product of irreducible polynomials in $\mathbb{Z}_3[x]$.
 (Hint: Calculate $(x^2 + x - 1)(x^2 - x - 1)$ in $\mathbb{Z}_3[x]$.)
 b. Let α be a root of $x^2 + 1 \in \mathbb{Z}_3[x]$. Exhibit a basis for the extension field $\mathbb{Z}_3(\alpha)$ over \mathbb{Z}_3 and list all elements of $\mathbb{Z}_3(\alpha)$.
 c. Describe the additive and the multiplicative structures of the field $\mathbb{F}_9 \equiv \mathbb{Z}_3(\alpha)$ with 9 elements. Give generators of the (sub)groups in terms of the basis in b.
 d. Exhibit the relation between the irreducible factors of the polynomial $f(x)$ from a. and the elements of the field $\mathbb{F}_9 \equiv \mathbb{Z}_3(\alpha)$ of b.

5. In the group \mathbb{Z}_{36} let $H = \langle 6 \rangle$ and $N = \langle 9 \rangle$.
 a. List the elements in $H + N$ and the elements in $H \cap N$
 b. List the cosets in $(H + N)/N$, showing the elements of each coset.
 c. List the cosets in $H/(H \cap N)$, showing the elements of each coset.
 d. Explicitly exhibit the map between $(H + N)/N$ and $H/(H \cap N)$ as in the 2nd isomorphism theorem.

6. Let R be a ring and $M \triangleleft R$ and $N \triangleleft R$ be ideals.
 a. Show that $M + N$ is an ideal of R.
 b. Show that $\Phi : M + N \rightarrow M/(M \cap N)$ defined by $\Phi(m + n) = m + (M \cap N)$ is indeed well-defined.
 c. Conclude that the ring $(M + N)/N$ is naturally isomorphic to the ring $M/(M \cap N)$.

7. a. State the definitions of integral domain, principal ideal domain, Euclidean domain, and unique factorization domain.
 b. Partially order the properties from a. (e.g. $P1 > P2$ meaning “if R is a $P1$ then R is also a $P2$”). No proofs required.
 c. Give at least one example to show that at least of the orderings in b. is strict (e.g. if $P1 > P2$ exhibit an example that is $P2$ but not $P1$). No proofs required, but short comments welcome.