1. Suppose \((G, \cdot)\) is an associative binary structure with a left identity \(e\), in which every \(x \in G\) has a left inverse \(x' \in G\).
 a. Define left identity and left inverse.
 b. Show that “the left identity in \(G\) is unique”. (Hint: First analyze \(x''x'x\) for some \(x \in G\)).

2. a. Give a precise statement of the division algorithm.
 b. Outline a proof that every subgroup of a finite cyclic proof is cyclic.
 c. Suppose \(G\) is a cyclic group of order \(n \in \mathbb{Z}^+\) generated by \(a \in G\).
 Find the set of all generators of \(G\) – prove that you are correct.
 d. Describe (without proof) the set of all subgroups of a cyclic group of order \(n \in \mathbb{Z}^+\).

3. Suppose \(G\) is a finite abelian group, \(m \in \mathbb{Z}^+\), and \(\Phi \colon G \mapsto G\) is defined by \(\Phi(x) = x^m\).
 a. Show that \(\ker \Phi = \{x \in G : \Phi(x) = e\}\) and \(\Phi[G] = \{\Phi(x) : x \in G\}\) are subgroups of \(G\).
 b. Is (n)either or both of these necessarily a subgroup without the assumption of \(G\) being abelian?
 Give a counterexample or sketch an argument in each case.
 c. Describe conditions on \(m\), \(G\) under which either subgroup is trivial or improper (equal to \(\{e\}\) or \(G\)).

4. a. Suppose \(G\) is a finite group of order \(|G| = n\). Show that for every \(a \in G\), \(a^n = e\) (identity in \(G\)).
 b. Show that every group of order 6 has at least two elements of order 3.
 (Do not just refer to a list of all groups of order 6 unless you prove that your list is complete.)
 Bonus. Does your argument generalize to the case of \(|G| = 10\), or \(|G| = pm\) with \(p\) prime?

4. Suppose \(G\) is a group, \(a \in G\), and \(H \leq G\) is a subgroup.
 Which of the following are necessarily subgroups of \(G\). Briefly justify your answers.
 a. \(\{g \in G : gag^{-1} = a\}\)
 b. \(\{g \in G : ghg^{-1} = h \text{ for all } h \in H\}\)
 c. \(\{g \in G : ghg^{-1} \in H \text{ for all } h \in H\}\)
 d. \(\{g \in G : ghg^{-1} = h \text{ for all } h \in G\}\)
 Bonus. Which of those that are subgroups are necessarily abelian?
 Bonus. Give the standard names, if known, for those that are subgroups.

6. a. Under what conditions do two transpositions \(\tau, \tau' \in S_n\) commute? Prove your result.
 b. Show that every 3-cycle in \(S_n\) is a product of two transpositions in \(S_n\).
 c. Prove that every product of two transpositions in \(S_n\) be written as a (product of) 3-cycle(s) in \(S_n\).
 Bonus. Find the order of the subgroup of \(S_n\) that is generated by the set of all 3-cycles in \(S_n\).

7. Suppose \(H\) is a subgroup of a finite group \(G\). For \(g \in G\) define the cosets \(gH = \{gx : x \in H\}\)
 and \(Hg = \{xg : x \in H\}\). In each of the following prove the statement of give a counterexample.
 a. If \(a \in G\) and \(aH\) is a subgroup of \(G\) then \(a = e\) (identity in \(G\)).
 b. If \(a, b \in G\) and \(aH = bH\) then \(Ha = Hb\).
 c. If \(a, b \in G\) and \(aH = bH\) then \(a^2H = b^2H\).