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References: I. N. Herstein, Topics in Algebra, 1st (1964) pages 60 – 63.
D. Dummit and R. Foote, Algebra, 3rd ed. pages 119 – 121.

Cayley’s theorem: Every finite group is isomorphic to a group of permutations.

In other words, for every finite group G there exists an n ∈ Z a subgroup H ≤ Sn and an isomorphism
Φ: G 7→ H. The proof is almost immediate from the observation that left-multiplication by any group-
element is a permutation of the elements of G.
More formally, but not necessarily any clearer, for a given a finite group G with elements gi, 1 ≤ i ≤ n.
encode the group operation in a function µ: {1, . . . n}×{1, . . . n} 7→ {1, . . . n} by gi·gj = gµ(i,j). Define a map
Φ: G 7→ Sn by Φ(gi)(j) = µ(i, j) – i. e., the image of the group-element gi is the permutation Φ(gi) which
sends each j ∈ {1, . . . n} to µ(i, j). The map Φ is a group homomorphism due to the associativity of the
group operation: For gi, gj ∈ G and k ∈ {1, . . . n}, calculate Φ(gi · gj)(k) = µ(µ(i, j), k) = µ(i, µ(j, k)) =
Φ(gi)(Φ(gj)(k)). The map Φ is one-to-one due to the cancellation laws in G: Suppose gi, gj ∈ G and
Φ(g1) = Φ(g2) ∈ Sn. Thus for all k ∈ {1, . . . n}, µ(i, k) = Φ(g1) = Φ(g2) = µ(j, k). But we need only one
gk ∈ G to conclude from gigk = gjgk that gi = gj . Thus Φ is an isomorphism of G onto some subgroup
of Sn.

Theorem: Suppose H is a subgroup of a group G with index |G:H| = m. Then there exists a homo-
morphism from G into the symmetric group Sm whose kernel is the largest normal subgroup of G that is
contained in H.

Note that this theorem reduces to the classical Cayley’s theorem in the special case of H = {e}.
It addresses the main drawback of the classical theorem that even for small groups the size of the group
S|G| = |G| ! is huge. Depending on the special case, one may obtain an isomorphic imbedding of G into
some smaller Sn, or one uses the homomorphism to draw conclusions about the structure of G.
After above nitpicking excursion, from now on we again liberally identify (maps into) the set of permutations
of a set X with n elements with (maps into) the set of permutations of the set {i ∈ Z+: i ≤ n}.

Proof. Suppose H ≤ G and |G:H| = m. Consider the set LH = {aH : a ∈ G} of left cosets of H in G.
The action of G by left multiplication on LH induces a map Φ: G 7→ SLH

∼= Sm via Φ(g)(aH) = (ga)H. It
is immediate that Φ is a group homomorphism.
The action is transitive since for any aH, bH ∈ LH there exists g ∈ G, namely g = ba−1, such that
Φ(g)(aH) = bH. The stabilizer of the action in G at H =eH ∈ LH is CG(H)={g ∈ G: Φ(g)(H) = H}=H.
We next identify the kernel of the map Φ:

ker Φ = {g ∈ G : ∀a ∈ G, Φ(g)(aH) = aH }
= {g ∈ G : ∀a ∈ G, (ga)H = aH }
= {g ∈ G : ∀a ∈ G, (a−1ga)H = H }
= {g ∈ G : ∀a ∈ G, a−1ga ∈ H }
= {g ∈ G : ∀a ∈ G, g ∈ aHa−1 } =

⋂
a∈G aHa−1 ≤ H.

As the kernel of a group homomorphism kerΦ is automatically a normal subgroup of G.
(It is a nice exercise to verify directly that the set K =

⋂
a∈G aHa−1 is normal in G – e.g. for any x ∈ K

and any g ∈ G, verify that gxg−1 ∈ K by manipulating this intersection.)
Now suppose N � G is any normal subgroup of G contained in H. Using N ≤ H, it is immediate that for
every a ∈ G, N = aNa−1 ⊆ aHa−1 and hence N ≤

⋂
a∈G aHa−1 = kerΦ.

Exercise: Explicitly write out what Φ is, i.e. make a table of function values for Φ, for examples of small
groups, e.g. G = S3 and H =< (1 2) > or G = Z3 and H =< 3 >.



MAT 444 Intro to Abstract Algebra April 2005

Strong Cayley theorem with applications (page 2 of 2)

The theorem immediately gives rise to the following useful criterion for simple groups. While a special case
of the subsequent proposition, we state and prove it separately as its proof is much more immediate.
Corollary: If G is a finite group, H ≤ G, |G:H| = m > 1, and |G| - m! then G is not simple.

Proof: Suppose H ≤ G is a subgroup of index |G:H| = m. Let Φ:G 7→ Sm be the group homomorphism
induced by the action of G on left cosets of H by left multiplication. Then Φ(G) ≤ Sm is a subgroup
and |Φ(G)| | m!. If |G| - m! then |Φ(G)| < |G| and Φ is not one-to-one. Hence the kernel kerΦ � G is a
nontrivial normal subgroup and G is not simple.

Adding one additional observation, one readily strenthens the preceding result to the following:

Proposition: If G is a finite group, H ≤ G, |G:H| = m > 1, and |G| - 1
2 m! then G is not simple.

Proof: Suppose H ≤ G is a subgroup of index |G:H| = m. Let Φ:G 7→ Sm be the group homomorphism
induced by the action of G on left cosets of H by left multiplication. Then Φ(G) ≤ Sm is a subgroup.
If Am ∩ Φ(G) 6= Φ(G) then Am ∩ Φ(G) � Φ(G) is a nontrivial normal subgroup of Φ(G) and hence
Φ−1(Am ∩ Φ(G)) � G is nontrivial normal subgroup of G. Thus if G is simple, then Φ(G) ≤ Am and
ker Φ = {e}, i.e. Φ is one-to-one. This requires that |G| = |Φ(G)| | |Am| = 1

2 m!

Application: There are no simple groups of orders |G| ∈ {12, 36, 80, . . .}: By the first Sylow theorem
there exist Sylow-subgroups of small index:
If |G| = 12 there exists a Sylow-2-subgroup with index 3, yet 12 - 3! = 6.
If |G| = 36 there exists a Sylow-3-subgroup with index 4, yet 36 - 4! = 24.
If |G| = 80 there exists a Sylow-2-subgroup with index 5, yet 80 - 5! = 120.

Rather immediate is the consequence:

Corollary: Suppose G is a finite group, and there exists a subgroup H ≤ G whose index |G:H| = p is the
smallest prime dividing the order of G. Then G is not simple.

Remark: Of course, in general there is no reason why there should exist any such subgroup of index p.

Proof: Suppose G is a finite group of order |G| = mps with p < m prime, p - m, and H ≤ G is a subgroup
of index |G:H| = p. Since the only divisors of p! different from p are smaller than p, yet all prime factors
of m > p are larger than p it follows that |G| = mps - p! and thus G is not simple.

Looking more carefully at the situation, one improves this last statement to the more precise:

Corollary: Suppose G is a finite group, p is the smallest prime dividing the order of G, and H ≤ G is a
subgroup of index |G:H| = p. Then H � G is a normal subgroup of G.

Proof: Suppose G is a finite group of order |G| = mps with p < m prime, p - m, and H ≤ G is
a subgroup of index |G:H| = p. Write K = kerΦ � G for the kernel of the group homomorphism Φ
induced by the action of G on left cosets of H, and write k = |H:K|. By the third isomorphism theorem
|G:K| = |G:H| · |H:K| = pk. By the first isomorphism theorem, the subgroup Φ(G) ≤ Sp is isomorphic
to the quotient group G/K, and hence the index kp = |G:K| = |G/K| = |Φ(G)| | p! of K in G divides
p!. Consequently, k divides (p− 1)! and also mps−1, but mps−1 has no divisors smaller than p. Therefore
k = 1, and hence H = K � G is normal in G.

Application: Suppose G is a finite group and H ≤ G is a subgroup of index |G:H| = 3.
Then H � G is normal, or G contains a subgroup N ≤ G of index |G:N | = 2 (which is normal).


