1. Suppose X and Y are sets, and $f: X \rightarrow Y$. Prove or provide a counterexample:
 a. For every $A \subseteq X$, $(f(A))^C = f(A^C)$ (where $A^C = X \setminus A$).
 b. For every $B \subseteq Y$, $(f^{-1}(B))^C = f^{-1}(B^C)$ (where $B^C = Y \setminus B$).

2. Suppose B_1 and B_2 are bases for topologies T_1 and T_2 on the same space X.
 a. Prove that if $B_1 \subseteq B_2$ then $T_1 \subseteq T_2$.
 b. Is the converse true? Justify your answer.
 c. If $A \subseteq X$ and T_2 is finer than T_1 what can you say about how the closures $c\ell_1(A)$ and $c\ell_2(A)$ of A in either topology compare? Prove that you are correct.

3. On \mathbb{R} consider the collections of intervals $B_s = \{(a, b): a < b\}$ and $B_\ell = \{[a, b): a < b\}$.
 a. Verify that B_ℓ is a basis for a topology on \mathbb{R}.
 b. Let T_s and T_ℓ denote the topologies generated by B_s and B_ℓ, respectively.
 Decide whether T_s is finer or coarser than T_ℓ, or neither – and prove that you are correct.

4. Suppose X and Y are topological spaces, $f: X \rightarrow Y$ is continuous.
 a. Prove or give a counterexample: If X is Hausdorff then Y is Hausdorff.
 b. Prove or give a counterexample: If Y is Hausdorff and f is onto, then X is Hausdorff.
 c. Prove or give a counterexample: If Y is Hausdorff and f is one-to-one, then X is Hausdorff.

5. Suppose X and Y are metric spaces and $f: X \rightarrow Y$.
 Prove that if f satisfies the $\varepsilon\delta$-characterization of continuity in metric spaces then f is also continuous according to the open-set definition in general topological spaces.

6. Suppose that X is a metric space X, $z \in X$, $A \subseteq X$, and \overline{A} is the closure of A.
 a. Show that if $z \in \overline{A}$ then there exists a sequence $a = (a_n)_{n \in \mathbb{Z}^+} \subseteq A$ that converges to z.
 b. Give an explicit counterexample to show that without the assumption that X is metric there need not exist such a sequence.

7. For each of the given functions $f, g: \mathbb{R} \rightarrow \mathbb{R}^\omega$ decide whether it is continuous when
 (i) \mathbb{R}^ω is equipped with the product topology, and when (ii) \mathbb{R}^ω is equipped with the box topology.
 a. $f(t) = (t, 2t, 4t, 8t, 16t, \ldots)$
 b. $g(t) = (t, t/2, t/4, t/8, t/16, \ldots)$