Lemma. Suppose \(d \) is a metric on a space \(X \). If \(f: [0, \infty) \to [0, \infty) \) is strictly increasing, concave, and \(f(0) = 0 \), then \(d' = f \circ d \) is also a metric on \(X \), and it generates the same topology as \(d \).

Proof. Positive definiteness and symmetry of \(d' \) are clear.

Now suppose that \(x, y, z \in X \) are arbitrary, but fixed. Since \(d \) is a metric we have

\[
d(x, z) \leq d(x, y) + d(y, z)
\]

Using the monotonicity of \(f \) it follows that

\[
d'(x, z) = f(d(x, z)) \leq f(d(x, y) + d(y, z))
\]

The concavity of \(f \), together with \(f(0) = 0 \), implies that for all \(a \geq 0 \) and all \(t > 0 \),

\[
\frac{f(a + t) - f(a)}{t} \leq \frac{f(t) - f(0)}{t - 0}
\]

and hence \(f(a + t) - f(a) \leq f(t) \) or \(f(a + t) \leq f(a) + f(t) \)

Applying this to the previous inequality with \(a = d(x, y) \) and \(t = d(y, z) \) yields

\[
d'(x, z) \leq d(d(x, y) + d(y, z)) \leq d(d(x, y)) + d(d(y, z)) = d'(x, y) + d'(y, z).
\]

Since \(x, y, z \in X \) were arbitrary, it follows that \(d' \) satisfies the triangle inequality and is a metric on \(M \). It generates the same topology as \(d' \) since for, e.g., all \(0 \leq t \leq 1/2 \), \(t/2 \leq f(t) \leq t \).

Theorem. Suppose that \((X_k, d_k), k \in \mathbb{Z}^+\) is a countable collection of metric spaces. Then the product topology on \(X = \prod_{k=1}^{\infty} X_k \) is generated by the metric \(d: X \times X \to [0, \infty) \) defined by

\[
d(x, y) = \sum_{k=1}^{\infty} 2^{-k} \frac{d_k(x_k, y_k)}{1 + d_k(x_k, y_k)},
\]

Proof. Applying the lemma to \(f: [0, \infty) \to [0, \infty) \) defined by \(f(t) = \frac{t}{1+t} \), shows that for every \(k \in \mathbb{Z}^+ \),

\[
2^{-k}(f \circ d_k)
\]

defines a metric on \(X_k \) that generates the same topology as \(d_k \). It readily follows that \(d \) is a metric on the product \(X \).

Let \(T \) denote the product topology on \(X \) and \(T_d \) denote the metric topology on \(X \) generated by \(d \).

We show that \(T_d \supseteq T \) and \(T \supseteq T_d \).

Suppose \(z \in X \) and \(U = \prod_{k=1}^{\infty} U_k \) is a basic open set in the product topology \(T \) on \(X \) that contains \(z \).

Then there exists \(N \in \mathbb{Z}^+ \) such that for all \(k \leq N \), \(U_k = X_k \).

For each \(k \leq N \) there exists \(\varepsilon_k > 0 \) such that the open ball \(B_k = \{ w \in X_k : d_k(w, z_k) < \varepsilon_k \} \subseteq U_k \).

Define \(\varepsilon = \min \{2^{-k} f(\varepsilon_k) : k \leq N \} \). Since the set is finite, \(\varepsilon > 0 \).

To verify that the open ball \(B(z, \varepsilon) \) is contained in \(U \), suppose \(y \in B(z, \varepsilon) \), i.e., \(d(z, y) < \varepsilon \). Since the infinite series is less than \(\varepsilon \), certainly each summand is less than \(\varepsilon \), i.e., for every \(k \in \mathbb{Z}^+ \), and in particular, for every \(k \leq N \), \(2^{-k}(f \circ d_k)(y_k, z_k) < \varepsilon \), or equivalently \(d_k(y_k, z_k) < f^{-1}(2^{k}\varepsilon) \leq f^{-1}(2^{k}2^{-k}f(\varepsilon_k)) = \varepsilon_k \).

Consequently for every \(k \in \mathbb{Z}^+ \), \(y_k \in B_k \subseteq U_k \), and therefore \(B \subseteq U \) and \(T_d \supseteq T \).

Conversely suppose that \(z \in X \), \(\varepsilon > 0 \), and \(B(z, \varepsilon) = \{ y \in X : d(z, y) < \varepsilon \} \) is a basic open set in \(T - d \).

Choose \(N \in \mathbb{Z}^+ \) such that \(2^{-N} < \frac{\varepsilon}{2} \). For \(k \leq N \) define \(U_k = \{ w \in X_k : d_k(y, z) < \frac{\varepsilon}{2N} \} \). For \(k > N \) define \(U_k = X_k \). Then \(U = \prod_{k=1}^{\infty} U_k \) is a basic open set in the product topology \(T \) on \(X \).

To verify that \(U \subseteq B(z, \varepsilon) \), suppose \(y \in U \). We show that \(y \in B \), hence \(U \subseteq B(z, \varepsilon) \), i.e. \(T \supseteq T_d \).

\[
d(z, y) = \sum_{k=1}^{N} 2^{-k} \frac{d_k(z_k, y_k)}{1 + d_k(z_k, y_k)} + \sum_{k=N+1}^{\infty} 2^{-k} \frac{d_k(z_k, y_k)}{1 + d_k(z_k, y_k)}
\]

\[
\leq \sum_{k=1}^{N} d_k(z_k, y_k) + \sum_{k=N+1}^{\infty} 2^{-k} \leq \left(\sum_{k=1}^{N} \frac{\varepsilon}{2N} \right) + 2^{-N} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]