1. a. State the definition of Cauchy sequence.
 b. Briefly summarize the difference between limit and limit point.
 c. State the definition of compact.

 Bonus. Give several different arguments that show that \(\mathbb{Q} \cap [0, 10] \) is not compact.

2. For each of the following subsets of \(\mathbb{R} \) find (without proof) the set of all limit points.
 a. \((0, 1]\)
 b. \(\mathbb{Q}\)
 c. \(\{(-1)^n \cdot \frac{n}{n+1} : n \in \mathbb{Z}^+ \}\)
 d. \(\{2^{-n} : n \in \mathbb{Z}\}\)

3.a. Suppose that \(K, a \in \mathbb{R} \), and \(f: \mathbb{R} \to \mathbb{R} \) is such that for all \(x \neq a \), \(f(x) > K \). Assuming that \(\lim_{x \to a} f(x) \) exists use the \(\varepsilon-\delta \)-definition of the limit to show that \(\lim_{x \to a} f(x) \geq K \).
 b. Give an example that shows that it need not be true that \(\lim_{x \to a} f(x) > K \).

4. a. Prove that every Cauchy sequence (in a metric space) is bounded.
 b. Outline the key steps of an argument that shows that \(\mathbb{R} \) is complete.

5. a. Suppose that \(f: X \to Y \) is a uniformly continuous function between metric spaces, and \((a_n)_{n=1}^\infty \) is a Cauchy sequence in \(X \). Prove that \((f(a_n))_{n=1}^\infty \) is a Cauchy sequence.
 b. Give an example that shows that the assumption of uniform (continuity) cannot be omitted.

6. Prove one of the following two theorems.
 If \(K \) is compact, \(Y \) a metric space, and \(f: K \to Y \) continuous, then \(f(K) \) is compact.
 If \(g: X \to Y \) and \(f: Y \to Z \) are continuous functions between metric spaces then \(f \circ g \) is continuous.