1. State precise definitions for the following
 a. A function f is increasing on an interval (a, b) if . . .

 b. A function f is differentiable on an interval (a, b) if . . .

 c. A function f is integrable over an interval $[a, b]$ if . . .

2. a. State the Extreme Value Theorem.

 b. State the Mean Value Theorem.

3. Working directly from the definition
 a. show that every differentiable function is continuous, and

 b. show that a differentiable function f is increasing on an interval (a, b)
 if and only if $f' \geq 0$ on (a, b).

4.a. Suppose that $a < b$ are real numbers. Working directly from the definition
 show that if a function $f: [a, b] \mapsto [0, \infty)$ is integrable then $\int_a^b f \geq 0$.

 b. Given an example of an integrable function $f: [a, b] \mapsto [0, \infty)$
 such that $\int_a^b f = 0$, but $f \neq 0$.

 Bonus. Show that if $f: [a, b] \mapsto [0, \infty)$ is continuous (and hence integrable),
 and $f \neq 0$ then $\int_a^b f > 0$.