1. a. Give a precise definition of \textit{least upper bound}.

 b. State the \textit{least upper bound axiom} (or \textit{supremum axiom}).

 c. State the definition for \textit{convergence of a sequence}.

 \textbf{Bonus.} State the definition of \textit{closed set}.

2. a. Using only the field axioms, prove \textbf{ONE} of the following:
 \begin{itemize}
 \item (i) \(\forall x \in \mathbb{R}, \ 0 \cdot x = 0 \),
 \item (ii) \(\forall x \in \mathbb{R}, \ (-1) \cdot x = -x \).
 \end{itemize}
 If impossible explain why.

 b. Is it possible, using only the field axioms, to prove that \(\frac{1}{2} \) exists? \textbf{Explain} why (not).

3. a. Prove that the sequence \((a_n)_{n=1}^{\infty}\) defined by
 \[a_n = \begin{cases}
 1 & \text{if } n \text{ is odd} \\
 n & \text{if } n \text{ is even}
 \end{cases} \]
 \(\) does not converge.

 b. If possible find a converging subsequence of \((a_n)_{n=1}^{\infty}\) and \textbf{prove} that this converges.
 If impossible \textbf{explain} why.

4. Suppose that \((a_n)_{n=1}^{\infty}\) and \((b_n)_{n=1}^{\infty}\) are converging sequences of real numbers.
 Prove that the sequence \((a_n - b_n)_{n=1}^{\infty}\) converges.

5. Outline the main steps of a proof that there exists a number \(x \in \mathbb{R} \) such that \(x^2 = 2 \).

6. a. What can you say about unions, intersections, and complements of open sets?
 State – without proof – the strongest statements that you know to be true.

 b. Give an example of a countable collection of closed intervals whose union
 is the open interval \((0, \infty)\).

 \textbf{Bonus.} Prove that the intersection of two open sets is open. (Work from the definition).