1. Suppose that \(f: \mathbb{N} \to \mathcal{P}(\mathbb{N}) \)
 a. Prove that \(f \) is not onto.
 b. Construct an explicit example of such \(f \) that is one-to-one.

2. Prove that there does not exist a rational number \(x \) such that \(x^2 = 3 \).
 (You may use, without having to prove it, that for any \(n \in \mathbb{Z}^+ \), if \(3 | n^2 \) then \(3 | n \).)

3. Let \(\sim \) be an equivalence relation on a set \(A \).
 a. Suppose \(a \in A \). Give a precise definition of the equivalence class \([a] \) of \(a \).
 b. Show that if \(a, b \in A \) are such that \([a] \cap [b] \neq \emptyset \) then \(a \sim b \).

4.a. Suppose \(k, m, n \) are integers such that \(k|m \) and \(m|n \). Prove that \(k|n \).
 b. For every positive integer \(n \in \mathbb{Z}^+ \) let \(D(n) = \{ k > 1: k|n \} \).
 Show that for every \(n > 1 \), \(D(n) \neq \emptyset \) and the smallest element in \(D(n) \) is prime.

5.a. Show that if \(m, n, q, r \in \mathbb{N}, m \neq 0 \), and \(n = mq + r \) then \(\gcd(m, n) = \gcd(m, r) \).
 b. Suppose \(m, n \in \mathbb{N} \), not both zero. Prove that there exist \(s, t \in \mathbb{Z} \) such that \(ms + nt = \gcd(m, n) \).

6. Find an integer \(x \) such that \(x \cdot 17 \equiv 1 \mod 4003 \).

7. Consider the function \(f: \mathbb{N} \to \mathcal{F}(\mathbb{N}) \) (the set of finite subsets of \(\mathbb{N} \)) defined recursively by \(f(0) = \emptyset \),
 and, if \(n \geq 1 \), then \(f(n) = \{ k \} \cup f(n - 2^k) \) where \(k \in \mathbb{N} \) is such that \(2^k \leq n < 2^{k+1} \).
 a. Find \(f(37) \).
 b. Find \(x \in \mathbb{N} \) such that \(f(x) = \{0, 1, 6\} \).

Bonus:
 c. Prove by induction on \(n \): For every \(n \in \mathbb{N} \), if \(S \in \mathcal{F}(\mathbb{N}) \) and \(m \leq n \) for all \(m \in S \), then there
 exists \(x \in \mathbb{N} \) such that \(f(x) = S \).
 Explain why this implies that \(f \) is onto.