Definitions:
A set S is finite if it is empty or there exists $n \in \mathbb{N}$ and a bijection $f: S \mapsto [n]$. A set S is countable if it is finite or there exists a bijection $f: S \mapsto \mathbb{N}$. A set S is uncountable if it is not countable.

Proposition. Every subset $S \subseteq \mathbb{N}$ is countable.

Corollary 1. If S is a set $f: S \mapsto \mathbb{N}$ is one-to-one then S is countable.

Corollary 2. If S is a set $f: \mathbb{N} \mapsto S$ is onto then S is countable.

Exercise. Assuming the proposition, prove the corollaries.

Proof (of the proposition) (intuitively clear – but lots of technical details . . .)
Suppose $S \subseteq \mathbb{N}$ and S is not finite. We will construct a bijection from \mathbb{N} to S. It is convenient to prove a number of properties of the function being defined along with the actual recursive construction. More specifically, for each $n \in \mathbb{N}$ let $f_n: [n] \mapsto \mathbb{N}$ denote the restriction of f to the set $[n]$. Along with defining each f_n we shall prove that each

(i) f_n is one-to-one, and
(ii) $f(n) \geq n$.

Since S is nonempty (the empty set if finite!), there exists a smallest element in S (using the WOP). Define $f(1)$ to be this element.

Suppose f_n has been defined and satisfies (i) and (ii). Since S is not finite, f_n cannot be onto. Thus $S \setminus f([n]) = S \setminus \{f(1), \ldots f(n)\}$ is nonempty and by the WOP it has a smallest element. Define $f(n+1)$ to be this smallest element.

Since f_n is one-to-one and $f(n+1) \neq f(k)$ for any $k \leq n$, it is clear that f_{n+1} is one-to-one. Moreover, since $f(n) \geq n$ and the smallest element of $S \setminus f([n])$ must be larger than $f(n)$ (prove this!) it follows that $f(n+1) > (n+1)$.

To show that f is one-to-one, suppose that $n, n' \in \mathbb{N}$ are such that $f(n) = f(n')$. W.l.o.g. assume that $n \geq n'$. Then $f(n') = f_{n'}(n')$ which together with $f_n(n) = f(n)$ yields that $f_n(n) = f_{n'}(n')$. But f_n is one-to-one and hence $n = n'$.

[[This proves in generality the useful: Lemma. If $f: \mathbb{N} \mapsto Y$ is any function such that for every $n \in \mathbb{N}$ the restriction of f to $[n]$ is one-to-one, then f is one-to-one.]]

To show that f is onto, suppose $n \in S$. Since $f(n+1) \geq (n+1) > n$ and $f(n+1)$ is the smallest element in $S \setminus f([n])$, it is clear that n cannot be an element of $S \setminus f([n])$. Thus n must be among the elements of $f([n]) = \{f(1), \ldots f(n)\}$, i.e. there exists $k \in [n]$ such that $f(k) = n$. ■