It is your responsibility to demonstrate that you have mastered the material of the class. Use the computers to validate your solutions, and to expedite basic calculations. **Solution formulas alone**, such as provided by MAPLE do NOT earn MUCH credit. Much more important are sound justifications and explanations, and convincing demonstrations that you have mastered the concepts and solution **methods** from this class. Scratch work, such as formulas scattered across the page without clear logical order, will be ignored and earn zero credit.

Throughout, $u(t)$ denotes the Heaviside function

$$u(t) = \begin{cases}
0 & \text{if } t < 0 \\
1 & \text{if } t \geq 0
\end{cases}$$

1. Demonstrate how to use Laplace transforms to solve the initial value problem

$$y'' + 7y' + 12y = 0, \quad y(0) = 2, \quad y'(0) = -1.$$

2. **a.** Assuming that it is legitimate to differentiate under the integral sign, show that

$$\mathcal{L}\{f(t)\}(s) = F(s) \text{ then } \mathcal{L}\{tf(t)\}(s) = -\frac{d}{ds}F(s).$$

What is $\mathcal{L}\{t^4f(t)\}(s)$?

b. Use part **a.** to derive the Laplace transform of t^4e^{10t}.

c. Use “real” calculus II or complex variables, to derive the table entry for the Laplace transform of cost t.

3. **a.** Find possible formulas using Heaviside functions for the functions sketched on the right.

b. Find the transform of each function (**use any method**, table or MAPLE are OK).

4. Find the inverse Laplace transform of

$$\frac{24e^{-10s}}{s^5} + \frac{1}{s} \cdot \frac{8}{s-1}.$$

Demonstrate your ability to manipulate the formula to make it ready for table look-up.

Bonus Use the identity $\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \ldots$ to find the inverse Laplace transform of $\frac{1}{1+e^{-x}}$. Sketch the graph of your answer.

5. For $b = 1$ solve the initial value problem.

$$y' + by = bu(t - 4) - bu(t - 8) + bu(t - 12) - bu(t - 16), \quad y(0) = 1.$$

Plot the solution together with the forcing term, and explain in physical terms what you see.

If you showed lots of detail in problem 1, you need not repeat the steps here. Manage your time.

Bonus. Describe in words how the solution changes when b is smaller than 1, e.g. $b = \frac{1}{2}$, and when b is larger than 1, e.g. $b = 3$, $b = 10$, or $b = 100$?