1. Consider the function \(f(x, y) = x^3 - y^3 + 3y^2 - 3x - 7 \).

You may earn up to **10 BONUS points** if you work this problem for \(g(x, y) = 171x^3 + 84x^2y - 63xy^2 + 172y^3 - 5625x - 7500y \) instead of the \(f(x, y) \) above.

Note, this alternative has nice solutions, but almost requires a computer.

a. Find all critical points of \(f(x, y) \).

b. Classify the critical points using second derivatives.

2. Consider the function \(z = \sqrt{x^2 + y^2} \).

a. Describe the shape of the graph in words.

b. Sketch vertical cross-sections of the graph, parallel to the \(xz \) plane for \(y = -2, -1, 0, 1, 2 \).

You may want to overlay these on the same set of axes.

c. Sketch a contour diagram of \(z \) and mark the gradient vectors at about a dozen different points.

BONUS: Use Lagrange multipliers to find the minimum of \(z \) subject to the constraint \(3x + 4y = 25 \).

3. The table on the right shows the monthly payment \(P = f(N, r) \) (in $) for a $10,000 loan with an annual interest rate of \(r \)% to be paid off over \(N \) months.

<table>
<thead>
<tr>
<th>(N)</th>
<th>8.50</th>
<th>8.75</th>
<th>9.00</th>
<th>9.25</th>
<th>9.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>205.17</td>
<td>206.37</td>
<td>207.58</td>
<td>208.80</td>
<td>210.02</td>
</tr>
<tr>
<td>54</td>
<td>223.50</td>
<td>224.70</td>
<td>225.89</td>
<td>227.10</td>
<td>228.30</td>
</tr>
<tr>
<td>48</td>
<td>246.48</td>
<td>247.67</td>
<td>248.85</td>
<td>250.04</td>
<td>251.23</td>
</tr>
<tr>
<td>42</td>
<td>276.10</td>
<td>277.27</td>
<td>278.45</td>
<td>279.62</td>
<td>280.80</td>
</tr>
<tr>
<td>36</td>
<td>315.68</td>
<td>316.84</td>
<td>318.00</td>
<td>319.16</td>
<td>320.33</td>
</tr>
</tbody>
</table>

a. Is \(f \) a linear function? Explain why or why not.

b. What are the units of \(\frac{\partial P}{\partial N}(48, 9) \) and \(\frac{\partial P}{\partial r}(48, 9) \)?

c. Estimate the values of \(\frac{\partial P}{\partial N}(48, 9) \) and \(\frac{\partial P}{\partial r}(48, 9) \).

d. Explain the practical meanings of \(\frac{\partial P}{\partial N}(48, 9) \) and \(\frac{\partial P}{\partial r}(48, 9) \), and the significance of their signs (+/−).

e. Find a formula for the local linearization \(L(N, r) \) of \(P = f(N, r) \) about \((N, r) = (48, 9) \).

f. Use the local linearization to estimate \(P(51, 9) \).

g. Find the slope of the contour that passes through \((N, r) = (48, 9) \).

h. Estimate at which interest rate \(r_1 \) the monthly payment \(P(51, r_1) \) equals \(P(48, 9) \).

i. Estimate the value of the second partial derivative \(\frac{\partial^2 P}{\partial N^2}(48, 9) \).

j. Explain the practical significance of the fact that this derivative is positive.

4. Consider the change to polar coordinates \(x = r \cos \Theta, y = r \sin \Theta \) and \(r = \sqrt{x^2 + y^2}, \Theta = \tan^{-1} \left(\frac{y}{x} \right) \).

a. Calculate \(\frac{\partial x}{\partial r} \) and \(\frac{\partial x}{\partial \Theta} \). Is \(\frac{\partial y}{\partial r} \frac{\partial r}{\partial x} = 1 \)?

b. Express the differential \(dx \) as a function of \(r, \Theta, dr, \) and \(d\Theta \).

BONUS: Suppose that a radar station measures the distance of an incoming object as \(r = 10 \text{km} \) with a possible error of no more than \(|dr| \leq 0.5 \text{km} \), and its direction at \(\Theta = \frac{\pi}{6} \) with a possible error of no more than \(|d\Theta| \leq 0.1 \). Calculate the \(x \)-coordinate of the measured position \((x, y) \) and use the differential \(dx \) to estimate the possible error.