Show your work - explain what you are doing.
It is YOUR responsibility to demonstrate that you have mastered the material of this class.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

You may bring in one page of formulas – which you have to turn it in with the test.

1. a. Find all critical points of the function \(f(x, y) = x^3 - 3x^2 - y^3 + 3y \).
b. Determine at which a local maximum, a local minimum or a saddle point occurs.
c. Show all your work, and explain your reasoning step by step!

2. Consider the function \(f(x, y) = xy^2 \).
a. Sketch several cross-sections of the graph parallel to the \(yz \)-plane. Explain.
b. Sketch several cross-sections of the graph parallel to the \(xz \)-plane. Explain.
c. Describe the shape of the graph in words.
d. Find the equation of the tangent plane to the graph of \(z = f(x, y) \) at \((x, y) = (0, 0) \),
e. Find the second order Taylor approximation for \(f(x, y) \) at \((x, y) = (0, 0) \).

3. Consider the table of function values for a function \(z = f(x, y) \) on the left. (\(x \)-values listed across, \(y \)-values up-down.)
a. Sketch a contour diagram.
b. Describe the shape of the graph in words.
c. Sketch the graphs for cross-sections parallel to the \(xz \)-plane for various values of \(y \).
d. Estimate the following derivatives:
\[
\frac{\partial f}{\partial x}(1, 2), \quad \frac{\partial f}{\partial y}(1, 2),
\]
e. Is \(\frac{\partial^2 f}{\partial x^2}(1, 2) \) positive, negative or zero? Explain why!

4. a. Calculate the curvature \(\kappa(t) \) for the curve \((x, y) = (t \cos(t), t \sin(t)) \) as a function of time.
b. Sketch the graph of the curvature as a function of time for \(t > 0 \).
c. Comment in one or two sentences how this graph agrees with your expectations.

5. For the “coordinate change” \(x = r \cos(\Theta), y = r \sin(\Theta) \), with “inverse” \(r = \sqrt{x^2 + y^2}, \Theta = \arctan(\frac{y}{x}) \),
a. calculate the total derivatives, that is, the matrices of partial derivatives
\[
A = \begin{pmatrix}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \Theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \Theta}
\end{pmatrix}
\quad \text{and} \quad
B = \begin{pmatrix}
\frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\
\frac{\partial \Theta}{\partial x} & \frac{\partial \Theta}{\partial y}
\end{pmatrix}
\]

b. Calculate the determinant of the matrix \(A \) (simplify the result).
c. Is it true that \(\frac{\partial x}{\partial r} \cdot \frac{\partial r}{\partial x} = 1 \) ?

Bonus: Calculate the determinant of \(B \) (liberally mix \((x, y) \) and \((r, \Theta) \) coordinates!)
Calculate and simplify the matrix products \(AB \) and \(BA \).