1.) Find all critical points of the function \(f(x, y) = x^3 - 3x^2 + 9x + y^3 - 3y + 7 \), and determine which of these are local maxima, local minima, saddle points, and which are neither of these.

2.) A ball thrown from ground level with initial velocity \(v \) at an angle \(\alpha \) (with the horizontal) hits the ground again at the horizontal distance

\[
s = \frac{v^2 \sin(2\alpha)}{g}
\]

(where \(g = -9.81 \frac{m}{s^2} \)).

a.) Calculate all first and second order partial derivatives of \(s \).
Is \(\frac{\partial s}{\partial \alpha} \) always positive? What is the practical meaning of this?
Is \(\frac{\partial^2 s}{\partial \alpha^2} \) always positive? What is the practical meaning of this?
b.) Find the maximum of \(s \) if \(0 \leq \alpha \leq \frac{\pi}{2} \) and \(0 \leq v \leq 20 \) (meters per second). (Use \(g \approx 10 \) for computational convenience).

3.) Consider the picture given on the right.

a.) Find formulas for the height of the point \(D \), the slope of the secant line through \(A \) and \(D \), and the tangent line (in the \(y \)-direction) through the point \(D \).

b.) Let \(dx = [AB] \) and \(dy = [AE] \), and \(\vec{a} \) be the unit vector in the direction of \(\vec{a} = (\Delta x)i + (\Delta y)j \). Mark the following on the picture: \(dz, \Delta z \), and a line whose slopes is \((D_2 f)(a, b) \).

c.) If \(z = xy \), \((a, b) = (5, 7) \), \(dx = 0.08 \), \(dy = 0.06 \) find \(dz \).

4.) Consider the contour diagram given on the left.

a.) Find all saddle points.

b.) Show the directions of the gradient at \(P \).

c.) Which of \(f_x, f_y, f_{xx}, f_{yy} \) are positive at \(P \)?

5.) Consider the given table of values of a function \(w = f(t, x) \).
Estimate the directional derivative \(D_{\vec{u}}(2, 3) \) where \(\vec{u} = (0.6, 0.8) \)
(Hint: First estimate the partial derivatives \(f_t(2, 3) \) and \(f_x(2, 3) \)).

For bonus credit: Suppose that this function is a solution of the partial differential equation \(w_t = w_{xx} \). Use this together with the information in the table to estimate \(f(2.2, 3) \).

<table>
<thead>
<tr>
<th>t/x</th>
<th>2.8</th>
<th>2.9</th>
<th>3.0</th>
<th>3.1</th>
<th>3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td>0.324</td>
<td>0.354</td>
<td>0.380</td>
<td>0.402</td>
<td>0.421</td>
</tr>
<tr>
<td>2.0</td>
<td>0.293</td>
<td>0.320</td>
<td>0.344</td>
<td>0.364</td>
<td>0.381</td>
</tr>
<tr>
<td>2.1</td>
<td>0.265</td>
<td>0.290</td>
<td>0.311</td>
<td>0.330</td>
<td>0.345</td>
</tr>
</tbody>
</table>

6.) Find the line \(y = a + bx \) that minimizes the least squares distance \(z = \sum_{i=1}^{3} (y_i - (ax_i + b))^2 \) from the points \((-1, 2), (0, 3), \) and \((1, 2)\).