Document all your work. Justify all nontrivial steps, in particular, all steps involving integral theorems. ASK FOR HELP if anything is unclear.

1.) Find a numerical value for the line integral \(\int_C f \, ds \) where \(f(x, y) = x + y \) and the curve \(C \) is the upper half of the unit circle (from \((1,0)\) to \((-1,0)\)). Bonus question: Where is the center of mass of the curve \(C \)?

2.) Let the curve \(C \) be the boundary of the triangle with corners \((0,0)\), \((1,0)\), and \((0,1)\) (oriented counter-clockwise), and let \(\vec{F} \) be the vector field \(\vec{F}(x,y) = (x+y)\vec{j} \).
 a.) Directly evaluate the line integral \(\int_C \vec{F} \cdot \vec{N} \, ds \) for the flux of \(\vec{F} \) across \(C \). (\(\vec{N} \) is the outward unit normal to \(C \)).
 b.) Use an integral theorem to convert the line integral into an area integral, and then evaluate the latter.

3.) Let the surface \(S \) be the part of the graph \(z = g(x,y) = 1-x^2-y^2 \) that lies above the \(xy \)-plane.
 a.) Find the surface area of \(S \), i.e. evaluate the surface integral \(\int_S dS \).
 b.) For the vector field \(\vec{F}(x,y,z) = \vec{i} + z^2\vec{k} \) directly evaluate the integral \(\int_S \vec{F} \cdot \vec{N} \, dS \) for the flux of \(\vec{F} \) across \(S \).
 (Let \(\vec{N} \) be the unit normal vector that points upwards.)

4.a.) Explain in detail how one may use the divergence theorem to write the flux integral of 3.b. as a volume integral.
 b.) Evaluate the volume integral of 4.a.

5.a) Calculate the circulation \(\int_C \vec{F} \cdot d\vec{r} \) of the vector field \(\vec{F} = \sin^2 \pi x \vec{i} + 3z \vec{j} + \sqrt{x^2 + 1} \vec{k} \) around the triangle \(C \) with corners \((0,0,1)\), \((1,0,1)\), and \((1,1,0)\) (traversed in this order). REMARK: The vector field \(\vec{F} \) is cooked-up in such a way that direct evaluation should be very unpleasant, yet applying Stokes' theorem gives a very simple integral — don't waste your time! What is \(\nabla \times \vec{F} \)? What is \(\vec{N} \) and what is the area of a triangle?
 b.) Does there exist a potential \(f \) such that \(\vec{F}(x,y,z) = \nabla f(x,y,z) \)? If yes, find such \(f \), if not, explain why not.

For comparison, using Thomas/Finney: (90% of class failed!)