Recall how any point in a plane can be represented by a pair of real numbers by using two mutually orthogonal coordinate lines: a rectangular coordinate system in the plane. In a similar way, points in space can be represented by triples of real numbers using three mutually orthogonal coordinate lines. In Fig. 1 we have drawn such a coordinate system. The three lines that are orthogonal to each other and intersect at the point \(O \) in Fig. 1 are called coordinate axes. They are usually called the \(x \)-axis, \(y \)-axis, and \(z \)-axis. We choose units to measure the length along each axis, and select a positive direction on each of them as indicated by the arrows.

![Figure 1](image1.png)

![Figure 2](image2.png)

The equation \(x = 0 \) is satisfied by all points in a coordinate plane spanned by the \(y \)-axis and the \(z \)-axis. This is called the \(yz \)-plane. There are two other coordinate planes: the \(xy \)-plane on which \(z = 0 \), and the \(xz \)-plane on which \(y = 0 \). We often think of the \(xy \)-plane as horizontal, with the \(z \)-axis passing vertically through it.

Each coordinate plane divides the space into two half-spaces. For example, the \(xy \)-plane separates the space into the regions where \(z \geq 0 \), above the \(xy \)-plane, and \(z \leq 0 \), below the \(xy \)-plane. The three coordinate planes together divide the space into 8 octants. The octant which has \(x \geq 0, y \geq 0, \) and \(z \geq 0 \) is called the nonnegative octant.

Every point \(P \) in space now has an associated triple of numbers \((x_0, y_0, z_0)\) that describes its location, as suggested in Fig. 1. Conversely, it is clear that every triple of numbers also represents a unique point in space in this way. Note in particular that when \(z_0 \) is negative, the point \((x_0, y_0, z_0)\) lies below the \(xy \)-plane in which \(z = 0 \). In Fig. 2, we have constructed the point \(P \) with coordinates \((-2, 3, -4)\). The point \(P \) in Fig. 1 lies in the positive octant.

The Graph of a Function of Two Variables

Suppose \(z = f(x, y) \) is a function of two variables defined over a domain \(D \) in the \(xy \)-plane. The graph of the function \(f \) is the set of all points \((x, y, f(x, y))\) in the space obtained by letting \((x, y)\) "run through" \(D \). If \(f \) is a sufficiently "nice" function, the graph of \(f \) will be a connected surface in the space, like the graph in Fig. 3. In particular, if \((x_0, y_0)\) is a point in the domain \(D \), we see how the point \(P = (x_0, y_0, f(x_0, y_0)) \) on the surface is obtained by letting \(f(x_0, y_0) \) be the "height" of \(f \) at \((x_0, y_0)\).