MAT 194/294/394/494, Problem Set 2

(1) ABC is a triangle and D is a point on AB produced beyond B such that $BD = AC$, and E is a point on AC produced beyond C such that $CE = AB$. The perpendicular bisector of BC meets DE at P. Prove that $\angle BPC = \angle BAC$.

(2) A four-digit number $abcd$ (in base ten) is said to be faulty if the product of the last two digits c and d equals the two-digit number ab, while the product of the digits $c - 1$ and $d - 1$ equals the two-digit number ba. Determine all faulty numbers.

(3) (a) For any positive integer n, prove that there exists a unique n-digit number N such that:
 (i) N is formed with only digits 1 and 2; and
 (ii) N is divisible by 2^n.
 (b) Can the digits “1” and “2” in (a) be replaced by any other digits?

(4) The equation

$$abc = (a + b - c)(a + c - b)(c + b - a)$$

is true if $a = b = c$. Are there any more solutions, where a, b, and c are positive numbers?
(1) Prove that \(\frac{3^n + (-1)^n}{2} - 2^n \) is divisible by 5 for all \(n \geq 2 \).

(2) Let \(b > 0 \) and \(b^a \geq ba \) for all \(a > 0 \). Prove that \(b = e \).

(3) \(ABC \) is a triangle, and the internal bisectors of \(\angle B, \angle C \), meet \(AC, AB \) at \(D, E \), respectively. Suppose that \(\angle BDE = 30^\circ \). Characterize \(\triangle ABC \).

(4) Find all natural numbers \(x \) such that the product of their digits (in decimal notation) is equal to \(x^2 - 10x - 22 \).
MAT 194/294/394/494, Problem Set 2

(1) A student in the Tutor Center tried to find the average rate of change of $f(x)$ over the interval $[a, b]$ by averaging $f'(a)$ and $f'(b)$. Surprisingly, he got the right answer. Determine all differentiable functions $f(x)$ such that this works, i.e., so that

$$\frac{f(b) - f(a)}{b - a} = \frac{1}{2} (f'(a) + f'(b))$$

for all real numbers a and b.

(2) Consider the sequence of positive integers: 1, 12, 123, 1234, ..., where the next term is constructed by lengthening the previous term at its right-hand end by appending the next positive integer. Note that this next integer occupies only one place, with “carrying” occurring as in addition: Thus the ninth and tenth terms of the sequence are 123,456,789 and 1,234,567,900, respectively. Determine which terms of the sequence are divisible by 11.

(3) Choose any seven-digit numbers n_1, n_2, ..., n_7 which are multiples of seven, and form a matrix A with entry (i, j) equal to the 10^jth digit of n_i. For instance, if the n’s are 8641969, 6135801, 1727607, 2419746, 3197523, 3802470, and 6827177, then

$$A = \begin{pmatrix}
8 & 6 & 4 & 1 & 9 & 6 & 9 \\
6 & 1 & 3 & 5 & 8 & 0 & 1 \\
1 & 7 & 2 & 7 & 6 & 0 & 7 \\
2 & 4 & 1 & 9 & 7 & 4 & 6 \\
3 & 1 & 9 & 7 & 5 & 2 & 3 \\
3 & 8 & 0 & 2 & 4 & 7 & 0 \\
6 & 8 & 2 & 7 & 1 & 7 & 7
\end{pmatrix}.$$

Prove that $\det A$ is an integral multiple of 7 (no matter what the seven original numbers are).

(4) Evaluate

$$\sqrt{2207 - \frac{1}{2207 - \frac{1}{2207 - \cdots}}}.$$

Express your answer in the form $\frac{a + b\sqrt{c}}{d}$, where a, b, and c are integers.