11. a) Prove that the kernel of the homomorphism $\varphi: \mathbb{C}[x, y] \to \mathbb{C}[t]$ defined by $x \mapsto t^2$, $y \mapsto t^3$ is the principal ideal generated by the polynomial $y^2 - x^3$.

Answer:

Let $I = (y^2 - x^3)$. We first show that $I \subseteq \ker \varphi$. Let $f = (y^2 - x^3)g(x, y) \in \mathbb{C}[x, y]$. $\varphi(f) = (t^6 - t^6)g(t^2, t^3) = 0$.

Next we show that $\ker \varphi \subseteq I$. First note that $\mathbb{C}[x, y] = \mathbb{C}[x][y]$. Let $f \in \ker(\varphi)$.

Using the division algorithm we have $f(x, y) = g(x, y)(y^2 - x^3) + h(x, y)$ where the degree of $h(x, y)$ in y is less than 2. Thus, $h(x, y) = p(x) \cdot y + p'(x)$ where $p(x)$ and $p'(x) \in \mathbb{C}[x]$. Let $p(x) = \sum_{i=0}^{n} a_i x^i$ and $p'(x) = \sum_{i=1}^{m} b_i x^i$. Since $f(x, y) \in \ker \varphi$, we have

$$\varphi(f(x, y)) = \varphi(g(x, y)) \cdot \varphi(y^2 - x^3) + \varphi(h(x, y))$$

$$= 0 + \varphi(p(x)) \cdot t^3 + \varphi(p'(x))$$

$$= t^3 \sum_{i=0}^{n} a_i t^{2i} + \sum_{i=0}^{m} b_i t^{2i}$$

$$= \sum_{i=0}^{n} a_i t^{2i+3} + \sum_{i=0}^{m} b_i t^{2i} = 0$$

where θ is a constant polynomial. But $2i + 3$ is an odd integer for all i while $2i$ is even. Hence for equation (1) to hold we must have $a_i = b_i = 0 \forall i$. So, $h(x, y) = 0$ and $f(x, y) = g(x, y)(y^2 - x^3) \subseteq I$.

b) Determine the image of φ explicitly.

Answer:

By part (a) we have that for any $f(x, y) \in \mathbb{C}[x][y]$ $\varphi(f) = \sum_{i=0}^{n} a_i t^{2i+3} + \sum_{i=0}^{m} b_i t^{2i}$. Hence, $\varphi(f)$ can be any polynomials in t with coefficient of $t^i = 0$, i.e. $\text{Im}(\varphi) = \left\{ \sum_{i=1}^{n} a_i t^i \mid a_i \in \mathbb{C} \right\}$. Constructively, let $n \in \mathbb{Z}$, then if $m = 2n \ (n \in \mathbb{Z})$, consider $x^n : \varphi(x^n) = t^{2n} = t^m$. If $m = 2n + 1 \ (n \in \mathbb{Z}, n \neq 0)$ then $\varphi(x^{n-1} y) = (t^2)^{n-1} t^3 = t^{2n+1}$.
Question:

20. Determine all automorphisms of the ring \(\mathbb{Z}[x] \).

Answer:

The set of all automorphisms \(\varphi: \mathbb{Z}[x] \to \mathbb{Z}[x] = \{ \varphi \mid \varphi(1) = 1 \text{ and } \varphi(x) = ax + b \text{ where } a = \pm 1, b \in \mathbb{Z} \} \).

First note that since \(\mathbb{Z}[x] \) is generated by 1, and \(x \) it is sufficient to give the image of 1 and \(x \) to completely determine \(\varphi \). Next, any automorphism from \(\mathbb{Z}[x] \to \mathbb{Z}[x] \) when reduced to \(\mathbb{Z} \) must be the identity (proposition 3.9). Thus, \(\varphi(1) = 1 \) and it remains to show that the only possibility are \(\varphi(x) = ax + b \) with \(a = \pm 1 \). First we see that if \(\varphi(x) = p(x) \), and the degree \((p(x)) \geq 2 \) then \(\varphi \) is not surjective, for \(x \) has no pre-image.

Next, let \(\varphi(x) = ax + b \). Since \(\varphi \) must be an automorphism, then \(\exists p(x) \in \mathbb{Z}[x] \) such that \(\varphi(p(x)) = x \). Clearly, \(p(x) \) must be of degree 1, since \(\varphi(n) = n \), for all \(n \in \mathbb{Z} \). Thus,

\[
\varphi(cx + d) = \varphi(c)\varphi(x) + \varphi(d) = c(ax + b) + d = cax + cb + d
\]

which means that \(c a = 1 \) and \(a \) is a unit in \(\mathbb{Z} \). Hence, \(a = \pm 1 \).

So we are left to show that any map of the form \(\varphi(1) = 1 \) and \(\varphi(x) = ax + b \), for \(a = \pm 1, b \in \mathbb{Z} \) is a bijective map. Let \(\varphi^{-1}(x) = \pm(x - b) \) depending if \(a = \pm 1 \). Then \(\varphi \varphi^{-1} = \varphi^{-1}\varphi = id \) and \(\varphi \) is a bijection.

Question:

23. Let \(R \) be a ring of characteristic \(p \). Prove that if \(a \) is nilpotent then \(1 + a \) is unipotent, that is, some power of \(1 + a \) is equal to 1.

Answer:

Since the characteristic of \(R \) is \(p \), we have that \(\forall r \in R \ p \cdot r = p \cdot 1 \cdot r = 0 \cdot r = 0 \). Moreover for any \(n \in \mathbb{Z} \) such that \(p|n \) we also have that \(n \cdot r = 0 \). Assume that \(a \) is nilpotent and that \(n \) is the smallest positive integer such that \(a^n = 0 \). Since \(p \) is prime we have that \(p \left(j^p \right) \) for all \(0 < j < p^k \). Since \(a^n = 0 \) for some \(n \geq 1 \), choose \(k \) such that \(p^k > n \), then \((a + 1)^{p^k} = a^{p^k} + 1^{p^k} = a^{p^k-n} \cdot a^n + 1 = (a^{p^k-n}) \cdot 0 + 1 = 1 \).
Section 10.4

Question:
2 Determine the structure of the ring \(\mathbb{Z}[x]/(x^2 + 3, p) \), where (a) \(p = 3 \), (b) \(p = 5 \).

Answer:

a) First notice that the ideal \((x^2 + 3, 3) = (x^2, 3) \). Thus in the quotient ring
\[\mathbb{Z}[x]/(x^2, 3) \], \(x^2 = 0 \) and \(3 = 0 \). This means that the polynomials left have degree 1 with integer coefficients modulo 3. Hence, \(\mathbb{Z}[x]/(x^2, 3) = \{ax + b \mid a, b \in \mathbb{Z}_p\} \) with multiplication \((ax + b)(cx + d) = (ad + bc)x + bd \) where \(ad + bc = ad + bd \) (mod 3) and \((bd) = bd \) (mod 3). In fact, \(\mathbb{Z}[x]/(x^2, 3) \approx \mathbb{Z}_3[x]/(x^2) \).

b) In a similar way \(\mathbb{Z}[x]/(x^2 + 3, 5) \approx \{ax + b / a, b \in \mathbb{Z}_5\} \) and multiplication given by
\((ax + b)(cx + d) = acx^2 + (ad + bc)x + bd \) where \(x^2 = -3 = 2 \) and \(ac, (ad + bc), bd \) are residue mod 5.
Hence, \(\mathbb{Z}[x]/(x^2 + 3, 5) \approx \mathbb{Z}_5[\sqrt{2}] \).

Question:
3. Describe each of the following rings.

a) \(\mathbb{Z}[x]/(x^2 - 3, 2x + 4) \) (b) \(\mathbb{Z}[i]/(2 + i) \)

Answer:

a) Let \(\mathbb{Z}[x]/(x^2 - 3, 2x + 4) = R' \). In \(R' \), \(x^2 - 3 = 0 \) and \(2x + 4 = 0 \)
\(\Rightarrow x^2 = 3 \) and \(2x = -4 \).
Warning: We cannot conclude that \(x = -2 \) in \(R' \) because \(2x + 4 = 2(x + 2) \) which means that both 2 and \((x + 2) \) are zero divisors. But we can obtain
\(4x^2 = 16 \) and \(4x^2 = 12 \Rightarrow 12 = 16 \Rightarrow 4 = 0 \), in \(R' \).

But we can do better:
\(x^2 - 3 + 2x + 4 = x^2 + 2x + 1 \Rightarrow 2x^2 + 4x + 2 \in I \) and
\(2x^2 + 4x + 2 - (x(2x + 4)) = 2 \) in \(I \). So, \(2 \in I \) and \(x^2 - 3 + 4 = x^2 + 1 \in I \).

Also, we see that \((x^2 - 3, 2x + 4) = (x^2 + 1, 2) \). Thus,
\(\mathbb{Z}[x]/(x^2 - 3, 2x + 4) = \mathbb{Z}[x]/(x^2 + 1, 2) \)
\(\approx \mathbb{Z}_2[x]/(x^2 + 1) \)
\(\approx \mathbb{Z}_2[i] \)

b) \(\mathbb{Z}[i]/(2 + i) = R' \) impose the relation \(i = -2 \) in \(R' \). But \(i^2 = -1 \), so \(i^2 = -1 = 4 \) and \(5 = 0 \). Thus \(\mathbb{Z}[i]/(2 + i) \approx \mathbb{Z}_5 \).