6. Prove that a linear operator on \mathbb{R}^2 is a reflection if and only if its eigenvalues are 1 and -1, and its eigenvectors are orthogonal.

Answer:
If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along the line ℓ, then let v be a vector along that line and let u be a vector in \mathbb{R}^2 orthogonal to ℓ. Then $\{u, v\}$ form a basis for \mathbb{R}^2 and $T(v) = v$ while $T(u) = -u$, thus the eigenvalues for T are 1, -1 and the eigenvectors are cu, and dv, for any $c, d \in \mathbb{R}$ which are orthogonal by construction. Conversely, if T is a linear operator on \mathbb{R}^2 with eigenvalues 1 and -1 associated to v and u (respectively), then $T(cv) = cT(v) = cv$ for all $c \in \mathbb{R}$. Hence the line ℓ passing through $(0, 0)$ and v is left fixed by T, while every vector w orthogonal to ℓ is reflected across ℓ since $w = du$ and $T(du) = -du$. Thus T is a reflection.

Question: 11. a) Compute the eigenvalues and eigenvectors of the linear operator $m = pr^\theta$.

Answer:
a) Geometrically a reflection followed by a rotation will not change the length of any vectors in \mathbb{R}^2. Thus, the only possible eigenvalues are 1, -1. If $\theta = 0$, then we saw that 1, -1 are the 2 eigenvalues. Moreover, since r is the reflection through the x-axis, the eigenvectors associated to 1 are $(a, 0)$ for $a \in \mathbb{R}$, while the one associated with -1 are $(0, b)$ for $b \in \mathbb{R}$. If $\theta \neq 0$, then geometrically (see Figure (a)) one sees that if ℓ is the line that bisect θ then for any p on the line ℓ we have that $pr^\theta(p) = p$. So any vector on the line bisecting the angle θ is an eigenvector with eigenvalue 1.

Similarly, one sees (Figure (b)) that any vector on the line ℓ' bisecting the angle $\pi - \theta$ will be an eigenvector with eigenvalue -1.

Question: c) Do the same thing as in (b) geometrically.

Answer:
c) From Figure (a) for m to be a reflection it must send all the vector of the line ℓ to themselves which we already have by a. Moreover, for all vectors v on the line perpendicular to ℓ we must have $m(v) = -v$. But, by Figure (b) we see that for all vectors w on ℓ' $m(w) = -w$. So it remains to show that the line bisecting the angle $\pi - \theta$ is perpendicular to ℓ. By construction the angle between ℓ and ℓ' is $\frac{\pi - \theta}{2} + \frac{\theta}{2}$ which is $\pi / 2$.