Classifying General Nonlinear Systems of PDEs

The nonlinear system of PDEs (note that higher-order time derivatives can always be replaced by adding more state variables and equations)

\[w_t + F(w, w_x, w_{xx}, \ldots) = 0 \]

is classified by expanding \(w \) as a Fourier perturbation about a constant nonlinear solution \(\bar{w} \)

\[w = \bar{w} + e^{\sigma t + i k x} \delta w \]

where \(\sigma \) is the growth rate and \(k \) is the wavenumber of the perturbation, and then linearizing with respect to \(\delta w \):

\[-\sigma \delta w = S \delta w \]

where \(S \) is the \textit{symbol} of the linearized PDE system.

The asymptotic eigenvalues \(-\sigma \) of \(S \) as \(k \to \infty \) determine the mathematical type of the various modes of \(w_t + F(w, w_x, w_{xx}, \ldots) = 0 \):

\[\sigma \sim \begin{cases}
\pm ik & \text{hyperbolic} \\
-k^2 & \text{parabolic} \\
+k^2 & \text{unstable} \\
\pm ik^2 & \text{Schrödinger} \\
\pm ik^3 & \text{dispersive} \\
-k^4 & \text{fourth-order diffusive} \\
+k^4 & \text{unstable}
\end{cases} \]

Typically elliptic modes decouple as a sub-problem in \(S \) as in Poisson’s equation \(\nabla^2 \phi = -\rho \) in electro-gas dynamics or the elliptic constraint in the Navier-Stokes equations \(\nabla \cdot \mathbf{u} = 0 \).

To summarize: In the linearized PDE

\[u_t \pm cu_x = Du_{xx} \pm \beta u_{xxx} - \epsilon u_{xxxx} \]

the coefficients \(D \) (diffusive) and \(\epsilon \) (fourth-order diffusive) must be \(\geq 0 \) for stability (note the minus sign in front of \(\epsilon \) on the RHS of the PDE), while the advective \(c \) and dispersive \(\beta \) coefficients do not play a role in stability.