Numerical Methods for Boundary Value Problems

BVPs are usually formulated for $y(x)$. Along the x axis, allocate gridpoints $x_i, i = 0, \ldots, N$. Boundary conditions will be imposed at x_0 and x_N.

First and Second Derivative Matrices

First and second derivatives at the interior gridpoints x_1, \ldots, x_{N-1} will be computed from solution values $y = [y_1, \ldots, y_{N-1}]$ and boundary conditions y_0 and y_N by

$$y' = D^{(1)} y$$

and

$$y'' = D^{(2)} y.$$

For $N = 10$ (boundary conditions are discussed below),

$$D^{(1)} = \frac{1}{2h} \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1
\end{bmatrix}$$

$$D^{(2)} = \frac{1}{h^2} \begin{bmatrix}
-2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -2
\end{bmatrix}.$$
Linear BVPs

As an example, let’s discretize the linear BVP
\[y'' + 2y' + y = 0, \quad y(0) = 1, \quad y(1) = 0. \]

We can compare our computed solution against the exact solution \(y(x) = (1 - x)e^{-x} \). The discrete equations for \(y = [y_1, \ldots, y_{N-1}] \) are
\[D^{(2)}y + 2D^{(1)}y + y \equiv Ay = b \]
where
\[b = [-y_0/h^2 + y_0/h, 0, \ldots, 0, -y_N/h^2 - y_N/h] \]
incorporates the coupling to the boundary conditions. The solution to the BVP is given by numerically solving \(Ay = b \).

Nonlinear BVPs and Newton’s Method

As a nonlinear example, let’s compute the solution to the boundary layer equation \((0 < \epsilon \ll 1)\)
\[\epsilon y'' + 2y' + e^y = 0, \quad y(0) = 0, \quad y(1) = 0. \]

The discrete equations for \(y = [y_1, \ldots, y_{N-1}] \) are
\[\epsilon D^{(2)}y + 2D^{(1)}y + e^y \equiv F(y) = 0. \]

To solve this system of nonlinear equations, we make a guess for \(y \) and then iterate using Newton’s method until the norm of the residual \(||F|| \leq \epsilon_R \):
\[y^{(k+1)} = y^{(k)} + \Delta y, \quad y^{(0)} = 0, \quad k = 0, 1, 2, \ldots \]
\[0 = F\left(y^{(k+1)}\right) \approx F\left(y^{(k)}\right) + J\Delta y \]
where the Jacobian
\[J = \frac{\partial F}{\partial y}\bigg|_{y^{(k)}} = \epsilon D^{(2)} + 2D^{(1)} + \text{diag}\{e^y\}. \]

Solving for the corrections \(\Delta y \), we get
\[J\Delta y = -F, \quad y \leftarrow y + \Delta y. \]
A uniform global approximation to $y(x)$ solving Eq. (⋆) can be derived for $\epsilon \to 0$:

$$y(x) = \ln \left(\frac{2}{x + 1} \right) - \ln(2) \exp \left(-\frac{2x}{\epsilon} \right).$$

In this limit, the width of the boundary layer (location of the maximum of y) is given by

$$B = -\frac{1}{2} \epsilon \ln(\epsilon).$$

Derivation of the uniform global approximation

(i) In the outer laminar region, y is changing slowly so we can neglect $\epsilon y''$ in comparison with the other two terms in (⋆):

$$2y'_\text{out} + \exp(y_{\text{out}}) = 0, \quad y_{\text{out}}(x) = \ln \left(\frac{2}{x + \epsilon} \right) = \ln \left(\frac{2}{x + 1} \right)$$

to satisfy the boundary condition $y(1) = 0$.

(ii) In the inner boundary layer, y is changing rapidly. Set

$$y(x) = y_{\text{in}}(X) = y_{\text{in}} \left(\frac{x}{\epsilon} \right).$$

Then to leading order ϵ^{-1} in ϵ (noting that $d/dx = \epsilon^{-1} d/dX$),

$$\frac{d^2 y_{\text{in}}}{dX^2} + 2 \frac{d y_{\text{in}}}{dX} = 0$$

$$y_{\text{in}}(X) = a + be^{-2X} = a(1 - e^{-2X})$$

to satisfy the boundary condition $y(0) = 0$. By requiring that $y_{\text{in}}(X) = \ln(2)$ as $X \to \infty$ to match y_{out} as $x \to 0$, we obtain

$$y_{\text{in}}(X) = \ln(2)(1 - e^{-2X}).$$

(iii) **Asymptotic matching.** The uniform global approximation is

$$y(x) = \ln \left(\frac{2}{x + 1} \right) - \ln(2) \exp \left(-\frac{2x}{\epsilon} \right)$$

since it agrees with y_{in} inside the boundary layer and with y_{out} in the laminar region.