Representations on real toric spaces

Soojin Cho
Ajou University, Korea

joint with
Suyoung Choi (Ajou Univ.) & Shizuo Kaji (Yamaguchi Univ.)

JMM Special Session in honor of Dennis Stanton
January 11, 2018
S. Cho, S. Choi and S. Kaji

Geometric representations of finite groups on real toric spaces

arXiv:1704.08591
Goal

To understand the Weyl group representation on the (co)homology of real toric variety associated to Weyl chambers.
Toric variety

A toric variety is a normal variety X that contains a torus $T = (\mathbb{C}^*)^n$ as a dense open subset together with an action $T \times X \to X$ of T on X that extends the natural action of T on itself.

$\text{toric varieties} \iff \text{fans}$

$\mathbb{C}P^2 \iff \left(K = \{\emptyset, 1, 2, 3, 12, 13, 23\}, \Lambda = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix} \right)$
Real toric variety

For a toric variety X, real toric variety $X^\mathbb{R}$ of X is the real locus of X; that is, $X^\mathbb{R}$ is the set of points that are stable under the canonical involution.

Example

$$(\mathbb{C}P^2)^\mathbb{R} = \mathbb{R}P^2$$

For $X = (K, \Lambda)$, if K a simplicial complex on $[m]$ let

$$\mathbb{R}\mathcal{Z}_K = \bigcup_{\sigma \in K} \{ (x_1, \ldots, x_m) \in (D^1)^m \mid x_i \in S^0 \text{ when } i \notin \sigma \}$$

where

$$D^1 = [-1, 1], \quad S^0 = \{-1, 1\},$$

and Λ_2 be the 0, 1 matrix obtained from Λ by taking mod 2 values. Then

$$X^\mathbb{R} = \mathbb{R}\mathcal{Z}_K / \ker \Lambda_2$$
Toric variety associated to Weyl chambers [1990 Procesi]

\[\Phi: \text{(irreducible) root system of type } R \text{ and rank } n \]

\[W_R: \text{Weyl group of type } R \]

\[K_R: \text{Coxeter complex of type } R \]

\[R = A_2 \]

\[K_{A_2} = \{ \emptyset, 1, 2, 3, 4, 5, 6, 12, 23, 34, 45, 56, 16 \} \]

\[\Lambda = \begin{pmatrix} 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -1 & -1 \end{pmatrix} \]

\[\Lambda_2 = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix} \]
(Co)homology

\[X = (K, \Lambda) \text{ with } K \text{ a simplicial complex on } [m] \]
\[X^R : \text{real toric variety of } X \]

Theorem

\[H^*(X; \mathbb{Q}) \cong \mathbb{Q}[x_1, \ldots, x_m]/(I + J) \]

Theorem [Suciu 2012, Choi-Park 2017]

\[H^*(X^R; \mathbb{Q}) \cong \bigoplus_{\omega \in \text{row} \Lambda_2} \tilde{H}^{*-1}(K_\omega; \mathbb{Q}) \]

\[H_*(X^R; \mathbb{Q}) \cong \bigoplus_{\omega \in \text{row} \Lambda_2} \tilde{H}_{*-1}(K_\omega; \mathbb{Q}) \]

as \(\mathbb{Q} \) vector spaces.
Weyl group action on the cohomology of X_R

\mathcal{W}-action on $H^*(X_R; \mathbb{Q})$ induced from the action on the Coxeter complex

1990 Procesi
1992, 1994 Stembridge

Theorem [Betti number]

$$\dim(H^{2k}(X_{A_n}; \mathbb{Q})) = A(n, k + 1)$$
Weyl group action on homology of X^R_R

W-action on $H_\ast(X^R_R; \mathbb{Q})$ induced from the action on the Coxeter complex

Remark
Since irreducible representations of Weyl groups are self-dual and the cohomology and the homology of X^R_R are dual representations, they are isomorphic representations.

Theorem [Suciu 2012, Choi-Park 2017]

$$H_\ast(X^R_R; \mathbb{Q}) \cong \bigoplus_{\omega \in \text{row}\Lambda_2} \tilde{H}_{\ast-1}((K_R)_\omega; \mathbb{Q}) \quad (\ast)$$

as \mathbb{Q} vector spaces.
Theorem [C-Choi-Kaji, 2017]

Let $X = (K, \Lambda)$ and suppose a finite group G acts on the simplicial complex K. Then, the following are equivalent:

1. G preserves $\ker \Lambda_2$;
2. the action induces one on $X^R = \mathbb{R} \mathbb{Z}_K / \ker \Lambda_2$;
3. each element of G permutes columns of Λ_2 without changing its row space;
4. each element $g \in G$ permutes columns of Λ_2 in such a way that there exists an $n \times n$-matrix A_g such that $g \Lambda_2 = A_g \Lambda_2$;
5. there exists a G-action on $H_*(X^R)$ which is compatible with the isomorphism (\ast), where the action of $g \in G$ on the right hand side is induced by $g : K_\omega \rightarrow K_{g\omega}$.

Weyl group action on homology of X^R
Weyl group action on homology of X^R_R

Theorem [C-Choi-Kaji 2017]

The Weyl group W_R acts on K_R and preserves $\ker \Lambda_2$. More precisely, let $\Lambda^j_2 \in \mathbb{Z}_2^m$ be the jth row of Λ_2, which corresponds to the ω_j coordinates of the rays. Then, we have

$$(s_i(\Lambda_2))^j = \Lambda^j_2 - c_{ij} \Lambda_2 R^i,$$

where $c_{ij} = (\alpha_i^\vee, \alpha_j)$ are the entries of the Cartan matrix of R. Hence we have

$$H_*(X^R_R; \mathbb{Q}) \cong \bigoplus_{\omega \in \text{row} \Lambda_2} \tilde{H}_{*-1}((K_R)_\omega; \mathbb{Q}) \quad (\ast)$$

as W_R modules.
Type A representation

\[W_{A_n} = S_{n+1}. \]
\[\omega \in Row((\Lambda_{A_n})_2) \iff S_\omega \subset [n] \]

Theorem [Choi-Park, 2015]

For \(S \subset [n] \), let \(I_S = S \) if \(|S| \) is even and \(I_S = S \cup \{n + 1\} \) otherwise. Then \((K_{A_n})_\omega \) is homotopically equivalent to the odd rank-selected Boolean algebra \(B_{I_{S_\omega}}^{odd} \).

Theorem [Solomon 1968, Stanley 1982]

Let \(Q \subset [m - 1] \). Then the homology of the \(Q \)-rank-selected poset \(B_{[m]}^Q \) is given, as an \(S_m \)-module, by

\[
\tilde{H}_*(B_{[m]}^Q) \cong \begin{cases}
\bigoplus_\nu c_{Q,\nu} S_\nu & (* = |Q| - 1) \\
0 & (* \neq |Q| - 1),
\end{cases}
\]

where \(c_{Q,\nu} \) is the number of standard tableaux of shape \(\nu \) with descent set \(Q \).
Type A representation

Theorem [C-Choi-Kaji 2017]

Let $Q = \{1, 3, \ldots, 2r - 1\}$ and $c_{Q,\nu}$ be the number of standard tableaux of shape ν with descent set Q. Then, we have

$$H_r(X_{A_n}^\mathbb{R}) \cong \bigoplus_{\eta \vdash (n+1)} \left(\sum_{\nu} c_{Q,\nu} \right) S^\eta,$$

where ν runs over all partitions of $2r$ that is contained in η, and η/ν has at most one box in each column.

Proof

$$H_r(X_{A_n}^\mathbb{R}) \cong \text{Ind}_{\mathfrak{S}_{\{1,\ldots,2r\}} \times \mathfrak{S}_{\{2r+1,\ldots,n+1\}}}^{\mathfrak{S}_{n+1}} \left(\bigoplus_{\nu} c_{Q,\nu} S^\nu \otimes S^{(n-2r)} \right)$$

$$\cong \bigoplus_{\nu} c_{Q,\nu} \left(\text{Ind}_{\mathfrak{S}_{\{1,\ldots,2r\}} \times \mathfrak{S}_{\{2r+1,\ldots,n+1\}}}^{\mathfrak{S}_{n+1}} \left(S^\nu \otimes S^{(n-2r)} \right) \right)$$

$$\cong \bigoplus_{\nu} c_{Q,\nu} \left(\bigoplus_{\nu \rightarrow \eta} S^\eta \right) \cong \bigoplus_{\eta \vdash (n+1)} \left(\sum_{\nu \rightarrow \eta} c_{Q,\nu} \right) S^\eta.$$
Type A representation

Let a_n be the number of alternating permutations (snakes) in S_{n+1}.

Theorem [Hendersen 2012]

The rth Betti number of $X_{A_n}^{\mathbb{R}}$ is $\binom{n+1}{2r} a_{2r}$.

Corollary [C-Choi-Kaji 2017]

The rth Betti number of $X_{A_n}^{\mathbb{R}}$, which is known to be $\binom{n+1}{2r} a_{2r}$, is

$$\sum_{\eta \vdash (n+1)} \left(\sum_{\nu} c_{Q,\nu} \right) f^{\eta}.$$

Example

$$H_3(X_{A_5}^{\mathbb{R}}) \cong S^{(3,3)} \oplus 2S^{(3,2,1)} \oplus S^{(3,1,1,1)} \oplus S^{(2,2,2)} \oplus S^{(2,2,1,1)}.$$
Type B representation

W_{B_n} is the group of signed permutations on $[n]$.
$\omega \in \text{Row}((\Lambda_{B_n})_2) \iff S_\omega \subset [n]$

Theorem [Choi-Park-Park, 2017]

$(K_{B_n})_\omega$ is homotopically equivalent to the odd rank-selected lattice $C_{S_\omega}^{odd}$ of faces of the cross-polytope over S_ω.

Theorem [Stanley 1982]

When $|S_\omega| = r$,

$$\widetilde{H}_*(C_{S_\omega}^{odd}) \cong \begin{cases} \bigoplus_{(\lambda,\mu)\vdash r} b(\lambda,\mu) S^{(\lambda,\mu)} & (\ast = \left\lfloor \frac{r-1}{2} \right\rfloor) \\ 0 & (\ast \neq \left\lfloor \frac{r-1}{2} \right\rfloor) \end{cases},$$

where $b(\lambda,\mu)$ is the number of double standard Young tableaux of shape (λ,μ) whose descent set is the set of odd numbers less than or equal to $r = |\lambda| + |\mu|$.
Type B representation

Theorem [C-Choi-Kaji 2017]

The kth homology $H_k(X_{B_n}^\mathbb{R})$ of $X_{B_n}^\mathbb{R}$ with the natural action of W_{B_n} is isomorphic to the sum of two induced representations

$$
\bigoplus_{r \in \{2k-1, 2k\}} \left(\text{Ind}_{W_{Br} \times W_{B_{n-r}}}^{W_{B_n}} \left(\bigoplus_{(\lambda, \mu) \vdash r} b(\lambda, \mu) S^{(\lambda, \mu)} \otimes S^{(\emptyset; (n-r))} \right) \right)
$$

of W_{B_n}, where $S^{(\emptyset; (n-r))}$ is the trivial representation of $W_{B_{n-r}}$.

Corollary [C-Choi-Kaji 2017]

$$
H_k(X_{B_n}^\mathbb{R}) \cong \bigoplus_{(\lambda, \nu) \vdash n} \left(\sum_{r \in \{2k-1, 2k\}} \sum_{(\lambda, \mu) \vdash r, \mu \sim \nu} b(\lambda, \mu) \right) S^{(\lambda, \nu)},
$$

where μ in the inside summation, runs over all partitions that is contained in ν, and ν/μ has $(n - r)$ boxes with at most one box in each column.
Type B representation

Let b_n be the number of alternating signed permutations (snakes) in W_{B_n}.

Theorem [Choi-Park-Park 2017]

The rth Betti number of $X_{B_n}^\mathbb{R}$ is $\binom{n}{2r} b_{2r} + \binom{n}{2r-1} b_{2r-1}$.

Corollary [C-Choi-Kaji 2017]

The rth Betti number of $X_{A_n}^\mathbb{R}$, which is known to be $\binom{n}{2r} b_{2r} + \binom{n}{2r-1} b_{2r-1}$, is

$$\sum_{(\lambda,\nu) \vdash n} \left(\sum_{r \in \{2k-1, 2k\}} \sum_{(\lambda,\mu) \vdash r, \mu \sim \nu} b(\lambda, \mu) \right) \binom{n}{|\lambda|} f^\lambda f^\nu.$$

Example

$$H_2(X_{B_3}^\mathbb{R}) \cong S^{((1),(1,1))} \oplus S^{((2),(1))} \oplus S^{((1,1),(1))} \oplus S^{((2),(1))}.$$

$$\left(\begin{array}{c} 1 \\ 3 \\ 2 \end{array}\right)$$ is the double standard tableau of shape $((1,1),(1))$ with descent set $\{1,3\}$.
Thank You!
Thank You!

Congratulations!!