puting machine. Approximately one second per iteration, aside from output time, is required.

For initial conditions we have chosen a slight departure from the state of no convection, namely (0,1,0). Table 1 has been prepared by the computer. It gives the values of \(N \) (the number of iterations), \(X \), \(Y \), and \(Z \) at every fifth iteration for the first 160 iterations. In the printed output (but not in the computations) the values of \(X \), \(Y \), and \(Z \) are multiplied by ten, and then only those figures to the left of the decimal point are printed. Thus the states of steady convection would appear as 0084, 0084, 0270 and -0084, -0084, 0270, while the state of no convection would appear as 0000, 0000, 0000.

The initial instability of the state of rest is evident. All three variables grow rapidly, as the sinking cold fluid is replaced by even colder fluid from above, and the rising warm fluid by warmer fluid from below, so that by step 35 the strength of the convection far exceeds that of steady convection. Then \(Y \) diminishes as the warm fluid is carried over the top of the convective cells, so that by step 50, when \(X \) and \(Y \) have opposite signs, warm fluid is descending and cold fluid is ascending. The motion therefore ceases and reverses its direction, as indicated by the negative values of \(X \) following step 60. By step 85 the system has reached a state not far from that of steady convection. Between steps 85 and 150 it executes a complete oscillation in its intensity, the slight amplification being almost indetectable.

The subsequent behavior of the system is illustrated in Fig. 1, which shows the behavior of \(Y \) for the first 3000 iterations. After reaching its early peak near step 35 and then approaching equilibrium near step 85, it undergoes systematic amplified oscillations until near step 1650. At this point a critical state is reached, and thereafter \(Y \) changes sign at seemingly irregular intervals, reaching sometimes one, sometimes two, and sometimes three or more extremes of one sign before changing sign again.

Fig. 2 shows the projections on the \(X-Y \) and \(Y-Z \)-planes in phase space of the portion of the trajectory corresponding to iterations 1400-1900. The states of steady convection are denoted by \(C \) and \(C' \). The first portion of the trajectory spirals outward from the vicinity of \(C' \), as the oscillations about the state of steady convection, which have been occurring since step 85, continue to grow. Eventually, near step 1650, it crosses the \(X-Z \)-plane, and is then deflected toward the neighborhood of \(C \). It temporarily spirals about \(C \), but crosses the \(X-Z \)-plane after one circuit, and returns to the neighborhood of \(C' \), where it soon joins the spiral over which it has previously traveled. Thereafter it crosses from one spiral to the other at irregular intervals.

Fig. 3, in which the coordinates are \(Y \) and \(Z \), is based upon the printed values of \(X \), \(Y \), and \(Z \) at every fifth iteration for the first 6000 iterations. These values determine \(X \) as a smooth single-valued function of \(Y \) and \(Z \) over much of the range of \(Y \) and \(Z \); they determine \(X \)